wwlenn

Land Use Prediction using Electro-Optical o e

to SAR Few-Shot Transfer Learning  &yrerepem

Marcel Hussing Karen Li Eric Eaton

University of Pennsylvania



wwlenn

- -
Contributions Shingicting FFVIPER S Penn
GRASP LABOR"ATORY ’/ Arts & Sciences - Engineering

Sliced Wasserstein distance (SWD) embedding
alignment can be scaled to multi-class setting

Instance normalization leads to more stable training
and better performance

« 5 I 3. Contrastive learning improves transfer performance
NP of SWD approach
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“Approximately 20% of the SDG indicators can be interpreted and
measured either through the direct use of geospatial data itself or
through integration with statistical data.” — United Nations

« Land use and land cover mapping can measure the health of
populations, urban areas, and ecosystems over time

« SAR data is unaffected by weather conditions and day-and-night

cycle and can effectively collect information continuously,
but labeled SAR datasets are limited and costly
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Method Extensions

Scaling to
I multi-class problems

Consider more realistic and harder
settings than previously analyzed.

Consider 3 different difficulties of
multi-task settings.
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Instance normalization
to stabilize training

Normalization of inputs is very
crucial, so is the normalization in
embedding space; we find that the
type of normalization matters!

Instead of using batch normalization,
we use instance normalization to
better handle the wide range of
spectrum in the SAR data.
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discriminative embedding

Method assumes that learned EO
embedding is sufficiently
discriminative.

We employ contrastive learning to
ensure that this is in fact the case.
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Experimental Results

Scaling to
Il multi-class problems
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Method outperforms baselines on multi-class problems
but leaves room for improvement in low data regime.

Instance normalization
to stabilize training
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SWD-transfer batch-norm

finetuning_instance-norm === SWD-transfer instance-norm

Instance normalization significantly stabilizes training
and is required to achieve good results.
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Contrastive Learning for
discriminative embedding
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Contrastive learning improves overall transfer
performance for most data regimes.
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