

Stable RL for Voltage Control

Using Reinforcement learning for Real-time Voltage Control in Distribution Systems

Jie Feng¹ | Yuanyuan Shi¹ | Guannan Qu² | Steven H. Low³ Anima Anadkumar³ | Adam Wierman³

¹Department of Electrical and Computer Engineering. University of California, San Diego ²Department of Electrical And Computer Engineering. Carnegie Melon University ³Computing and Mathematical Science Department, Caltech

Background

- Proliferation of distributed energy resources (DERs)
- Increasingly complex and rapid voltage violations
- Control of reactive power for voltage regulation

Overview of the proposed method

Key Motivation: Can we apply RL to voltage control with provable stability guarantee?

Reinforcement learning provides a real-time control rule

Lyapunov function gives a stability guarantee

Problem Formulation

Optimal Voltage Control Problem

$$min_{\theta} \quad J(\theta) = \sum_{t=0}^{H} \gamma^{t} \sum_{i=1}^{n} c_{i}(v_{i}(t), u_{i}(t))$$

$$\mathbf{v}(t+1) = \mathbf{v}(t) + I_{\Delta T} X \mathbf{u}(t) = f_{\mathbf{u}}(\mathbf{v}(\mathbf{t}))$$

$$v(t+1) = -g_{\theta_{i}}(v_{i}(t))$$
Neural Network Controller

voltage stability holds.

- Objective function: $c_i(v_i(t), u_i(t)) = \eta_1 \| \max(v_i(t) \bar{v}_i, 0) + \min(v_i(t) \underline{v}_i, 0) \|_2^2 + \eta_2 \| u_i(t) \|_1$
- Update rule for q: $q_i(t+1) = q_i(t) + u_i(t)$

Voltage Stability Condition

Lyapunov Function

$$V(\mathbf{v}) = (\mathbf{v} - f_{\mathbf{u}}(\mathbf{v}))^{\mathsf{T}} X^{-1} (\mathbf{v} - f_{\mathbf{u}}(\mathbf{v}))$$

Stability Condition

$$-\frac{2}{\Delta T}X^{-1} < \frac{\partial u}{\partial v} < 0$$

Monotonicity

Stability

Linear

Monotone Neural Network

Stable-DDPG

Monotone Network Design

Single-phase

Three-phase

Numerical result

IEEE 13-bus system

Transient Performance

	Voltage recovery time (steps)		Reactive power (MVar)	
Method	Mean	Std	Mean	Std
Linear Stable-DDPG DDPG DDPG*	5.31 4.47 6.61 2.31	3.19 2.43 20.67 1.18	8.22 6.75 30.20 3.65	10.72 8.08 120.24 3.21

The Stable-DDPG achieves best overall performance.

It saves 16% of response time and 18% of reactive power consumption compared to the optimal linear policy.

IEEE 123-bus system

(a) Dynamics of v(left) and q(right) for standard DDPG

(b) Dynamics of v(left) and q(right) for Stable-DDPG

Stable RL for Voltage Control

Thank you for listening

Code is available at GitHub, please scan the QR code

Contact: Jie Feng jif005@ucsd.edu