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Abstract

Surface ozone is an air pollutant that contributes to hundreds of thousands of pre-
mature deaths annually. Accurate short-term ozone forecasts may allow improved
policy to reduce the risk to health, such as air quality warnings. However, fore-
casting ozone is a difficult problem, as surface ozone concentrations are controlled
by a number of physical and chemical processes which act on varying timescales.
Accounting for these temporal dependencies appropriately is likely to provide more
accurate ozone forecasts. We therefore deploy a state-of-the-art transformer-based
model, the Temporal Fusion Transformer, trained on observational station data
from three European countries. In four-day test forecasts of daily maximum 8-hour
ozone, the novel approach is highly skilful (MAE = 4.6 ppb, R2 = 0.82), and
generalises well to two European countries unseen during training (MAE = 4.9
ppb, R2 = 0.79). The model outperforms standard machine learning models on our
data, and compares favourably to the published performance of other deep learning
architectures tested on different data. We illustrate that the model pays attention to
physical variables known to control ozone concentrations, and that the attention
mechanism allows the model to use relevant days of past ozone concentrations to
make accurate forecasts.

1 Introduction

Surface ozone is a secondary pollutant which is not directly emitted by anthropogenic activities, but
formed in the troposphere via a series of photochemical reactions [1]. Surface ozone is estimated
to contribute to between 365,000 and 1.1 million premature deaths worldwide annually [2, 3, 4, 5],
primarily by causing cardiovascular and respiratory diseases [6, 7, 8]. The impacts of ozone pollution
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have been linked to both long and short-term exposure to high ozone [9, 10]. Background levels
of ozone in remote areas often exceed guidelines, while local ozone concentrations can far exceed
guidelines. The WHO estimates that 99% of the world’s population live in areas where concentrations
routinely exceed guidelines [11]. Due to its phytotoxicity, the negative effects of ozone air pollution
on vegetation, ecosystems and crops are also significant [12, 13], leading to considerable economic
losses from reduced crop yields [14]. Forecasting ozone concentrations is important to quantify
and reduce the risks of ozone pollution to human and ecosystem health [15], particularly as climate
change is expected to lead to increased ozone in some regions [16, 17].

Derived from the key processes controlling ozone, in-situ photochemical production and transport,
there are multiple relationships between ozone and climate-sensitive environmental covariates such as
temperature and meteorology that act on varying timescales [18, 19]. The contribution of each of these
factors makes accurate forecasting of ozone with numerical forward (e.g. weather forecast) transport
models (CTMs) and standard machine learning (ML) methods a complex and computationally
expensive task. The timescale of influence of these environmental variables may be on the order of
days or weeks. Varying anthropogenic emissions also affect ozone (e.g. weekdays vs. weekends), and
therefore an ML approach that accounts for these temporal relationships is necessary. Transformers
have been shown to be highly effective in sequential domains such as natural language processing
[20, 21], in part due to their ability to attend to long-term dependencies in the data, and therefore
a transformer-based model may provide an intrinsic advantage over standard ML models (such as
random forests) and convolutional and recurrent neural networks that have been previously explored
in the ozone forecasting literature [22, 23, 24].

In this work we train and evaluate a transformer-based ML model, focussing on the skill of the model
when forecasting extreme ozone and ozone in countries unseen during training. This is a step towards
ML models capable of making accurate short-term forecasts of surface ozone now, and in future
climates.

2 Methodology

2.1 Model

To complement existing ML methods and numerical CTMs for ozone forecasting, we deploy a state-
of-the-art temporal deep learning architecture, the Temporal Fusion Transformer (TFT) [25]. The
TFT combines gated residual networks, variable selection networks, an Long-Short Term Memory
(LSTM) encoder-decoder layer, and multi-head attention. The TFT ingests both static and dynamic
predictive features, and in order to extract prediction intervals a quantile loss function was used.

Despite being a relatively computationally expensive ML method, training the TFT on our dataset
took 2 hours using 2 Tesla V100 GPUs. Once trained, forecasts across 994 individual stations are
made in seconds. This illustrates the vast speed-up of ML models compared to CTMs (which typically
take hours or days to run). Hyperparameters were manually optimised for performance on validation
data (see Appendix A.3).

2.2 Data

The Tropospheric Ozone Assessment Report (TOAR) dataset [26] is used as a suitable exploratory
dataset for our model, due to its global coverage and large quantity of observational station ozone
data. We selected data for 3 European countries: the UK, France and Italy. These were chosen to
represent 3 different air quality domains, in order to test whether a single model could be trained
to make accurate forecasts across domains. Data from 1997 to 2014, from all months of the year,
and from 994 urban and rural stations were included in our dataset. This dataset therefore provides
a larger sample of different environments than in similar previous work [22, 24, 27, 28]. Our final
dataset contains more than 2 million individual days of data. We scaled our features with min-max
normalisation [29].

The data include both static and dynamic features relevant to ozone concentrations. The static features
relate to characteristics of a particular station, such as the local population density, while the dynamic
features are environmental covariates which change through time, such as temperature. The inputs
used are described in Table 2. To train, validate and test our models, the data was split temporally,
with the penultimate year of station data used for validation, the final year used for testing and the
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remainder for training. The previous 21 days of observations of ozone and covariates were used to
make 4 day ozone forecasts. 21 previous days was chosen as an appropriate timescale for the likely
temporal effects of covariates on ozone.

3 Results

When forecasting ozone concentrations using concurrently observed covariate data the model was
skillful (MAE = 4.6 ppb, R2 = 0.82, RMSE = 5.6 ppb, r = 0.90). These forecasts rely on previous
ozone observations and concurrent covariate data, and therefore they are suitable for making short-
term future forecasts with a meteorological forecast as input, and infilling missing ozone data in
historical station data. While we cannot make direct comparisons to all published methods due to
differing test datasets, the skill of our method compares favourably to other standard ML methods
and numerical air quality forecasting models such as AQUM [30, 31], especially given the size and
variety of our test dataset (Table 1). A correlation plot of TFT forecasts on the test set, against
observations, is given in Figure 1A. The model was significantly more accurate on our data than
standard ML approaches (e.g. random forests and LSTMs), and approximately 40% more accurate in
MAE compared to a persistence model.

Figure 1: A illustrates predictions against observations on the test data for forecasting ozone with
the TFT. B shows a 4 day forecast at a single station. The grey line shows the attention that the
transformer is paying to different days in the time history. The prediction intervals generated with the
quantile loss are also shown.

The skill of the TFT can be further analysed by looking at forecasts at individual stations in our
dataset, as illustrated in Figure 1B. Figure 1B also shows days from the past which the attention
mechanism in the model used to inform the forecast, shown by the grey line. The advantage of the
transformer architecture is illustrated as the model pays attention to recent high ozone days to make
future forecasts of high ozone, rather than purely the most recent days. Figure 1 also illustrates the
prediction intervals generated by the TFT, which are useful to evaluate trust in the model.

The TFT’s capacity to make skillful predictions of ozone concentrations at both urban and rural
stations was evaluated. Comparable recent works typically focus on training and evaluating models
on solely urban or rural ozone [22, 28] and it remains unclear if a single model can generalise across
these 2 environments. Encouragingly, we show here that the TFT performed similarly on urban and
rural data (MAE = 4.5 ppb, R2 = 0.83 and MAE = 4.6 ppb, R2 = 0.81, respectively). Furthermore,
the feature importances of this model, derived from the attention mechanism, are largely in line with
what is expected physically: both temperature and planetary boundary layer height are key variables
(Appendix A.2, Figure 3).

4 Generalisation: Across Europe and Spring Ozone

To evaluate the skill of our model in generalising to unseen data, we used the model trained on
data from the UK, France and Italy to make forecasts in Spain and Poland. The model was able
to generalise impressively in both countries (MAE = 4.9 ppb, R2 = 0.79), as shown in Figure 2A,
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Method (and paper) r (Pearson) RMSE / ppb
Persistence 0.42 10.16
[32], GEOS-Chem 0.48 16.2
Ridge regression 0.50 9.59
[30], AQUM 0.64 20.8
Random forest 0.68 7.51
[33], DRR 0.70 6.3
[30], bias-corrected AQUM 0.76 16.4
[34], CNN 0.77 8.8
[23], CNN 0.79 12.0
[32], bias-corrected GEOS-Chem 0.84 7.5
LSTM 0.85 6.11
[24], RNN 0.86 12.5
[28], CNN-Transformer NA 7.8
TFT 0.90 5.6

Table 1: The relative performance of different ML and numerical approaches when predicting ozone
compared to observed ozone values. Methods in italics were tested on our dataset, while others
used different data. The difficulty of comparing methods tested on different datasets is shown by the
varying RMSE values.

suggesting that the model could be used to make forecasts on unseen countries without the need for
extensive further training data.

To evaluate the skill of the TFT in forecasting extreme ozone concentrations, the model, trained
on annual data, was evaluated on just spring and summertime ozone, when ozone concentrations
in Europe tend to peak [35]. Making accurate forecasts of high ozone is important, as these high
ozone concentrations pose a greater threat to health, and are likely to occur more frequently in future
climates. Figure 2B also illustrates that the TFT was able to make reasonable forecasts on spring and
summertime ozone concentrations (MAE = 5.4 ppb, R2 = 0.67). However, the performance of the
model evaluated on spring/summer data was poorer than performance when forecasting on data from
the rest of the year.

Figure 2: A illustrates the performance of the TFT when predicting on data from 2 countries unseen
during training: Poland and Spain. B shows that when forecasting during spring/summertime in the
UK, France and Italy, the performance of the TFT was poorer (MAE = 5.4 ppb, R2 = 0.67) than
forecasting during the rest of the year.

5 Conclusions

Forecasting ozone accurately is necessary to reduce the risk of ozone on human health now, and in fu-
ture climates. However, forecasting ozone is subject to substantial numerical modelling uncertainties
and is usually highly computationally expensive. As an ML alternative, a transformer-based model,
the TFT, makes skillful predictions of ozone concentrations at stations across Europe. The model
is able to make accurate predictions across urban and rural environments, comparing favourably to
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competing methods, and performs reasonably when predicting high ozone. Promisingly, the model is
able to generalise to data from 2 countries unseen in training, Poland and Spain. Our novel approach
thus provides a computationally cheap method to make accurate forecasts of ozone across Europe,
though further work is required to improve model predictions of extrema, such as encoding physical
relationships or additional meteorological and spatial information in the model.
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Data and code availability
The TOAR dataset is publicly available online [26], and code used in this work will
be made publicly available.

A Appendices

A.1 Features from the TOAR dataset

Table 2 describes the data used as features for the machine learning model. The
features are split into static and dynamic features. Static features describe the
characteristics of a particular station, while dynamic features vary through time. Due
to the large size and relative completeness of our dataset, imputing missing values
was deemed unnecessary, and rows with missing data were dropped.

A.2 Feature importances

The feature importances of the TFT, derived from the weights of attention mechanism
in our model, are shown in Figure 3. These importances are largely in line with what
is expected physically: both temperature and planetary boundary layer height are
key variables.

Figure 3: The variable importances of the TFT when making forecasts, derived from the weights of
the attention mechanism. These are largely in line with expected physical relationships.

A.3 Model hyperparameters

Table 3 details the hyperparameters used for the TFT model. These hyperparameters
were selected with manual optimisation, however more principled methods such a
random search or Bayesian optimisation will be implemented in future work.
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Variable Name Description
Static
station type Characterisation of site, e.g. "background", "industrial", "traffic".
landcover The dominant IGBP landcover classification at the station location extracted from the

MODIS MCD12C1 dataset (original resolution: 0.05 degrees).
toar category A station classification for the Tropospheric Ozone Assessment Report based on the

station proxy data that are stored in the database. One of unclassified, low elevation
rural, high elevation rural or urban.

pop density Year 2010 human population per square km from CIESIN GPW v3 (original horizontal
resolution: 2.5 arc minutes).

max 5km pop density Maximum population density in a radius of 5 km around the station location.
max 25km pop density Maximum population density in a radius of 25 km around the station location.
nightlight 1km Year 2013 Nighttime lights brightness values from NOAA DMSP (original horizontal

resolution: 0.925 km).
nightlight max 25km Year 2013 Nighttime lights brightness values (original horizontal resolution: 5 km).
alt Altitude of station (in m above sea level). Best estimate of the station altitude, which

frequently uses the elevation from Google Earth.
station etopo alt Terrain elevation at the station location from the 1 km resolution ETOPO1 dataset.
nox emi Year 2010 NOx emissions from EDGAR HTAP inventory V2 in units of g m−2 yr−1

(original resolution: 0.1 degrees)
omi nox Average 2011-2015 tropospheric NO2 columns from OMI at 0.1 degree resolution (Env.

Canada) in units of 1015 molecules cm−2.
Dynamic
o3 Ozone concentration, daily maximum 8-hour average statistics according to the using

the EU definition of the daily 8-hour window starting from 17 h of the previous day.
Measured at the station, with UV absorption.

cloudcover Daily average cloud cover from ERA5 reanalysis for the grid cell containing a particular
station.

relhum Daily average relative humidity from ERA5 reanalysis for the grid cell containing a
particular station.

press Daily average pressure from ERA5 reanalysis for the grid cell containing a particular
station.

temp Daily average temperature from ERA5 reanalysis for the grid cell containing a particular
station.

v Daily average meridional wind speed from ERA5 reanalysis for the grid cell containing
a particular station.

u Daily average zonal wind speed from ERA5 reanalysis for the grid cell containing a
particular station.

pblheight Daily average planetary boundary layer height from ERA5 reanalysis for the grid cell
containing a particular station.

Table 2: Table giving the relevant data extracted from the TOAR database.

Model Hyperparameter value
TFT
attention head size 4
dropout 0.2
hidden continuous size 16
hidden size 32
learning rate 0.0302
lstm layers 2
optimizer ranger

Table 3: Table giving the hyperparameters for the final TFT used for model evaluation, determined
by manual optimisation. During manual optimisation, larger hidden and attention head sizes were
tested, however increasing these values did not improve performance.
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