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Abstract

The body of research on classification of solar panel arrays from aerial imagery
is increasing, yet there are still not many public benchmark datasets. This paper
introduces two novel benchmark datasets for classifying and localizing solar panel
arrays in Denmark: A human annotated dataset for classification and segmentation,
as well as a classification dataset acquired using self-reported data from the Danish
national building registry. We explore the performance of prior works on the new
benchmark dataset, and present results after fine-tuning models using a similar
approach as recent works. Furthermore, we train models of newer architectures
and provide benchmark baselines to our datasets in several scenarios. We believe
the release of these datasets may improve future research in both local and global
geospatial domains for identifying and mapping of solar panel arrays from aerial
imagery. The data is accessible at https://osf.io/aj539/.

1 Introduction

The transition towards a more sustainable power generation has already begun. A core component of
the energy mix in the future could very likely be solar panels also known as photovoltaics (PV) [15].
However, as the amount of deployed residential PV increases, the difficulty to balance the frequency
of power for the Transmission System Operators (TSOs) becomes a harder task, as a greater part of
the energy mix will be fluctuating due to meteorological variation caused by solar and wind. The
ability to track solar adoption using remote sensing may benefit policy makers in their efforts to
incentivize further green energy adoption, as identifying regions of lower solar adoption may be
assisted using machine learning methods. Finally, there could be a viable motivation to understand the
adoption of residential solar power, both in the sense of demographics studies as well as supporting
greater adoption through hubs of installed PV—while some countries have good data and registration
of residential installed PV, we often find it sparse, de-centralized and not easily accessible. Our
contribution represents datasets spanning Denmark. We believe this dataset may contribute towards
better models and generalization for the detection and localization of solar, and is as such a step in
the right direction of the aforementioned goals.

2 Related works

The early studies using machine learning for classification and localization of solar panels were
commenced by [1, 9, 14], who demonstrated a viable approach to identify and localize residential PV
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Table 1: An overview over the presented datasets in this paper († denotes that Gentofte Municipality
is used for training and validation, and ⋆ denotes that Herlev Municipality is used as the test set).

Dataset Negatives Positives Area (km2)
⋆ Herlev 7,048 398 12.07
† Gentofte 15,489 482 25.70
BBR - 104,397 3,853.02

Total 22,537 105,344 3,890.79

Table 2: Number of examples per data split. The positive examples are identical for the classification
and segmentation dataset.

Data split Negatives Positives Share of total (%)
Training 10,376 323 46
Validation 5,113 159 22
Test 7,048 398 32

Total 22,537 880 100

systems using an aerial or satellite imaging modality. While showing promise, subsequent studies
found challenges upon deployment when performing inference across geographical domains [5]. The
causes are considered to be a function of the image modality variability: ground sampling distance
(GSD), angle of sampled image, time of day, or atmospheric based diffusion. This challenge begs
the question of garnering labelled data from a variety of geographical locations in order to learn a
better generalizable model. We identified three comparable datasets released in previous years: A
segmentation dataset from the US [1], as well as two classification and segmentation datasets based
in Germany [10] and France [7]. The US dataset spans four cities and consists of 19,863 polygons
bounding the PV systems on residential houses. The German dataset consists of 107,809 images for
classification and 4028 images for segmentation, while the more recent French based crowdsourced
dataset [7], contains 28,000 instances of PV systems with metadata including azimuth, surface, and
slope, in addition around 20,000 annotated solar segmentations.

3 Dataset specification

In this paper, we present two types of datasets. Similarly to prior works of Mayer et al. [10], we
provide a classification and a segmentation dataset. For the problem of classification, we provide
manually labelled image instances from two urban municipalities in the Greater Copenhagen Region,
while also providing an exogenous image dataset gathered from the Danish Building Registry (BBR),
including images that span all over Denmark where a PV system is to be registered. The segmentation
dataset covers the same instances manually labelled in the classification set. The images were
manually labelled using Pigeon [4], while for the segmentation, we relied on AI-assisted annotation
software by Toronto Annotation Suite [6]. We refer to Table 1 for additional details and the Appendix
for further examples and specifications of our labelling approach. SolarDK comprises images from
GeoDanmark [3] with a variable Ground Sample Distance (GSD) between 10 cm and 15 cm, all
sampled between March 1st and May 1st during 2021, containing 23,417 hand labelled images
for classification and 880 segmentation masks, in addition to a set of about 100,000+ images for
classification covering most variations of Danish urban and rural landscapes. We believe our datasets
has the right combination of challenge as well as quality to further the development of a better
generalizable method for the detection and localization of solar.

4 SolarDK baselines

We chose to focus our baselines revolving around the most widely used architectures found previously,
with a particular emphasis on DeepSolarDE [10] and BBR to test geographical generalization. We
introduce three scenarios for benchmarking SolarDK:
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1. Pre-trained models out of domain (i.e. ImageNet).

2. Pre-trained models out of domain with minority class augmentations from BBR.

3. Pre-trained models of the same domain, yet different geographical region.

The three blocks in Table 3 are baselines corresponding to the three scenarios listed above. Except
for the third block experiments, we trained all models five times with different random seeds.
DeepSolarDK follows the same approach as Mayer et al. [10], using the Inception V3 architecture
[12]. The model tuning involved introducing augmentations such as horizontal and vertical flips,
random perturbations to contrast and brightness, changes in initializations, as well as adjusting for the
class imbalance by weighting the loss of the minority class higher, while also tuning hyperparameters
like label smoothing, learning rate or dropout [11].

For the segmentation part, we produced two sets of baselines: One for pre-trained models out of
the domain, and another by fine-tuning DeepSolarDE[10]. We compute all our classification and
segmentation baselines using a threshold of 0.5, while using binary cross entropy loss to train the
classification models, we apply the DICE-loss for the segmentation experiments.

The dataset was split into training/validation/test-splits where Gentofte municipality was used for
training and validation, while Herlev municipality was used for testing purposes. The BBR dataset
was used to augment the number of positive training samples in classification tasks, such that, instead
of weighting the loss term of the minority class higher, we instead sample by random from the
positive class set of BBR to gain an equal proportion of negatives and positive instances. These are
the results illustrated by the asterisk in Table 3. We refer to the Appendix for further information on
the datasets and the computed scenarios.

4.1 Baseline metrics

For the classification problem we use precision, recall and Cohen’s κ, while for the segmentation
problem we use mean Intersection over Union (mIoU) in addition to precision and recall.

4.2 Results

The results of our experiments are summarized in Table 3 and 4. We see indications of better
performance when using BBR as a substitute for minority class loss weighting. Similarly, we observe

Table 3: Classification baselines for the SolarDK testset. Each model was trained five times with
different random seeds (except last block of models). * denotes runs augmenting the minority class
using the BBR dataset, and bold-face denotes best mean performance(s). DeepSolarDE refers to a
forward pass of [10] while DeepSolarDK is a fine-tuned version of [10] on the SolarDK dataset.

Model Recall Precision Cohens (κ)
ConvNext 0.60±0.04 0.79±0.03 0.66±0.02
EfficientNet-b5 0.26±0.01 0.64±0.08 0.35±0.03
EfficientNet-b7 0.35±0.05 0.71±0.02 0.45±0.04
InceptionV3 0.34±0.18 0.56±0.38 0.55±0.04
ResNet50 0.25±0.02 0.78±0.04 0.36±0.02
ResNet101 0.58±0.40 0.49±0.39 0.41±0.21
ResNet152 0.65±0.16 0.51±0.28 0.49±0.14

ConvNext* 0.65±0.07 0.70±0.06 0.65±0.03
EfficientNetb5* 0.31±0.10 0.60±0.09 0.38±0.07
EfficientNetb7* 0.51±0.09 0.66±0.11 0.54±0.05
InceptionV3* 0.53±0.08 0.73±0.09 0.58±0.05
ResNet50* 0.41±0.04 0.71±0.07 0.49±0.04
ResNet101* 0.41±0.10 0.65±0.03 0.46±0.08
ResNet152* 0.36±0.17 0.66±0.15 0.40±0.10

DeepSolarDE (inference) 0.42 0.17 0.21
DeepSolarDK 0.73 0.65 0.67
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Table 4: Segmentation baselines for the SolarDK testset. First group of runs were pre-trained using
COCO train2017 and Pascal VOC, while the bottom section was pre-trained on German data [10].
The model with best mean performance(s) is marked with bold-face font.

Model Recall Precision IoU
ResNet50-DeepLabV3Plus 0.81±0.03 0.86±0.01 0.72±0.02
ResNet101-DeepLabV3Plus 0.79±0.05 0.86±0.02 0.70±0.03
ResNet152-DeepLabV3Plus 0.79±0.04 0.88±0.03 0.71±0.02
ResNet50-FPN 0.80±0.03 0.87±0.03 0.72±0.01
ResNet101-FPN 0.79±0.02 0.87±0.02 0.71±0.01
ResNet152-FPN 0.81±0.06 0.87±0.05 0.72±0.01
ResNet50-PSPNet 0.75±0.04 0.85±0.03 0.64±0.04
ResNet101-PSPNet 0.66±0.13 0.88±0.05 0.61±0.07
ResNet152-PSPNet 0.72±0.05 0.85±0.04 0.63±0.02

DeepSolarDE (inference) 0.53 0.34 0.51
DeepSolarDK 0.85 0.75 0.62

some of the best performance when using ConvNext [8] as an encoder, while also seeing good
performance from InceptionV3 [12], in particular when using BBR augmentations. The model with
best mean performance(s) is marked with bold-face font, but note that the intervals for several model
are overlapping. It is also worth to note the substantially subpar performance of DeepSolarDE [10]
prior fine-tuning, which is an indication of imperfect geographical generalization.

5 Discussion

The baselines computed and gathered from our studies show that there is still a gap in solving the
problem of identifying and localizing solar power. We do indeed verify there exists a known problem
of deploying image based remote sensing neural networks on out of domain geographical regions
[13, 5, 2]. We believe a way to solve this would be to call for the release of more annotated data,
sampled across a variety of geographical regions, in addition to new developments in basic machine
learning research that may allow for a better generalization throughout larger geographical regions.

6 Ethical considerations

Privacy was our primary concern during our ethical considerations for publishing this dataset.
Therefore we have chosen to reduce the personal identifiable information (PII) to a minimum, by not
including the geospatial coordinates of the images or the PV systems. Additionally, we provide BBR
metadata aggregated on a municipal level.

7 Conclusion

In this paper we introduced new datasets for the detection and localization of solar panels, with a
particular emphasis on solar panels deployed in urban environments. We have applied DeepSolarDE
[10] for solar classification and localization tasks, in what may generally be perceived as a similar
domain. We observe the failure for the best trained model from DeepSolarDE [10] to perform well on
our datasets initially, however, upon using this model as a starting point for fine-tuning it very rapidly
improves performance, on occasion in excess of models solely trained on the SolarDK dataset. This
may indicate that DeepSolarDE [10] inherently does learn certain features that generalize as given by
its out-of-the-box performance, while however not yet fully capable of being deployed across even
fairly small geographical differences.
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A Appendix

B Experimental setup

Our work encompasses the motivation to test three different aspects of the challenge at hand: The
ability for the models to learn out of the box (w/o prior domain knowledge), the ability for in domain
trained models to perform on a similar, but geographically different dataset, as well as assessing the
value of using minority class augmentations from other geographical regions to boost performance.
We used Adam as optimizer for all trained models.

B.1 Models without prior domain knowledge

All models shown in the first block of Table 3 and Table 4 have been trained on a subset of COCO
train2017 and the 20 categories available in the Pascal VOC dataset. We apply minority class loss
weighting of |Negatives|

|Positives| to control for the class imbalance problem. The classification models with
encoders ConvNext, ResNet and InceptionV3 were trained with a batchsize of 64 and a learning rate
of 0.0001, while both of the EfficientNet encoders were trained with a batchsize of 32 and the same
learning rate.

B.2 Models using BBR to augment minority class

With all other settings being equal, we avoid doing any loss class imbalance weighting, and instead
sample by random examples (outside of our Municipalities, Gentofte and Herlev) of the positive class
from the BBR dataset such that the ratio between the negative and positive class is about 1:1. This is
only performed for the training set.

B.3 Models with prior domain knowledge

Prior training we compute a baseline simply doing a forward pass of the trained model through the
SolarDK test set. Following such, we explore hyperparameters using the validation set and converge
on the best set of models after a number of runs. The results from prior runs and the hyperparameters
adjusted can be seen Table 5 below.

B.3.1 DeepSolarDK

In Table 5 we present the parameters used to identify the best performing model. From top left to
right, the name of the configuration, optimizer chosen, batch size, label smoothing, learning rate,
learning rate decay, recall, precision, Cohen’s kappa and F1 score.

Table 5: Table summarizing the prior runs for identifying hyperparameters for the DeepSolarDK
model.

Validation performance
Conf. Opt. BS LSR LR LRD Recall Pre κ F1

A Adam 128 0.075 0.001 0.2 0.5882 0.6803 0.6195 0.6309
B Adam 32 0.075 0.0001 0.2 0.5294 0.6522 0.572 0.5844
C Adam 64 0 0.0001 0.3 0.4824 0.7257 0.5684 0.5795
D Adam 128 0.075 0.001 0 0.5412 0.5055 0.5063 0.5227
E SGD 32 0.075 0.0001 0.2 0.3882 0.3143 0.3232 0.3474
F SGD 64 0 0.0001 0.3 0.3294 0.2414 0.2507 0.2786
G SGD 128 0.075 0.0001 0.3 0.2706 0.2063 0.205 0.2341
H SGD◦ 32 0.075 0.0001 0.2 0.1176 0.1227 0.0915 0.1201

I Adam× 64 0.075 0.0001 0.2 0.1984 0.1529 0.1488 0.1727
J Adam† 64 0.075 0.0001 0.2 0.21 0.1294 0.1395 0.1600
K Adam‡ 64 0.075 0.0001 0.2 0.375 0.035 0.059 0.0645
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Table 6: Test performance comparison of the best three models based on their validation results
(Table 5) in comparison with DeepSolarDE prior fine-tuning on the SolarDK dataset.

Test performance
Conf. Recall Precision Cohens κ F1

B 0.7337 0.6505 0.6717 0.6896
C 0.8139 0.5972 0.6729 0.6889
A 0.7232 0.6412 0.6613 0.6798

DeepSolarDE 0.4186 0.1667 0.2124 0.2384

C Sample images from SolarDK

Figure 1: Illustrations of images from Herlev municipality (test set). Top row without PV, bottom
row with PV.

Figure 2: Examples of segmentation masks (indicated by red).
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