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1. 2.



Everyone wants to model how the atmosphere 
evolves.
Goal. Speed up these models using a low-cost ML 
emulator.
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What happens next …
– day? 
– week?
– month?
– season?
– year?
– decade?
– century?

What would happen in 
different scenarios?



Our approach is a two-step process which 
uses all data.
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1. Train model to 
emulate high-res data1
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2. Fine-tune on low-
resolution (target) data



We evaluate using three chaotic dynamical 
systems. 
They’ve been used extensively in emulation studies.

(1)Kuramoto-Sivashinsky (KS)

(2)Brusselator

(3) Lorenz 96 (L96)
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Results: better forecasting skill.
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Truth

Coarse-grain-only 
ML model
(40 runs, same init
conditions)

time

One of the 8 
dimensions 
of low-
resolution 
L96

Our full-data TL 
model
(40 runs, same init
conditions)

Note: it’s a 
probabilistic model



TL makes better predictions.
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We evaluate using hold-out log-likelihood, a standard probabilistic procedure from ML.

15 randomly initialized models were trained and the average hold-out log-likelihood is 
shown.

• Robustly across multiple systems

System Our full-data TL 
model

Coarse-grain-only ML 
model

Kuramoto-Sivashinsky 91.73 37.74

Brusselator 384.64 -555.40
Lorenz 96 11.51 4.37



TL makes better predictions.
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We evaluate using hold-out log-likelihood, a standard probabilistic procedure from ML.

15 randomly initialized models were trained and the average hold-out log-likelihood is 
shown.

• Robustly across multiple systems
• Gives more reliable training

System Our full-data TL 
model

Coarse-grain-only ML 
model

Kuramoto-Sivashinsky 91.73 ± 0.62 37.74 ± 16.50

Brusselator 384.64 ± 27.41 -555.40 ± 486.39
Lorenz 96 11.51 ± 0.64 4.37 ± 1.07

Standard Errors in mean are far smaller for TL model



Details of approach: 
example with Recurrent Neural Network
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Details of approach: 
example with Recurrent Neural Network
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2. New task-specific layers are 
trained to reproduce low-
resolution evolution  𝑋𝑙𝑜𝑤!, 
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Takeaways
• By framing the problem as a transfer-learning task, we’ve shown how to 

learn from all high-resolution data to create low-resolution emulators.

• The approach performs particularly well in data-scarce scenarios, acting as 
a regularizer. 

• Our simple two-step approach can be easily tested on various problems. 
And now must be tested on operational models. Happy to help anyone 
interested in applying this to their problems.

• There is a still a gap between the spread and error in our forecasts, and it is 
unclear if that is closable by this approach. Raghul Parthipan

rp542@cam.ac.uk
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Supporting slides
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RNN model equations
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Details on dynamical systems
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For the KS and Brusselator, our low-resolution data, Xt, is a spatio-temporal averaging of the high-resolution, Yt, 
as per standard coarse-graining approaches.

For the L96, the system itself makes a separation between low- and high-resolution variables.


