Don’t Waste Data: Transfer Learning
to Leverage All Data for
Machine-Learnt Climate Model Emulation

Raghul Parthipan®? & Damon J. Wischik?!
NeurlPS 2022 Workshop: Tackling Climate Change with Machine Learning

25 UNIVERSITY OF 0 British

@ P CAMBRIDGE

Computer Laboratory

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Everyone wants to model how the atmosphere

evolves.
Goal. Speed up these models using a low-cost ML

emulator.

What happens next ...

— day?

— week?

— month?

— season?

— year?

— decade?

— century?

What would happen in
different scenarios?

Our approach is a two-step process which
uses all data.

High-res Simulation
traces

High-res physics-
High based simulator
fidelity 1. Train model to

emulate high-res data
High-res ML

emulator

2. Fine-tune on low- Coarse-graining

resolution (target) data

Low-res ML Low-res simulation
Low emulator _ traces
fidelity Low-res physics-
based simulator

We evaluate using three chaotic dynamical

systems.
They’ve been used extensively in emulation studies.

(1)Kuramoto-Sivashinsky (KS)

(2)Brusselator

(3) Lorenz 96 (L96)

Results: better forecasting skill.

One of the 8
dimensions
of low-

resolution
L96

125 A

100 A

75

50 A

25 A

_25 4

_50 4

100

200

time

300

400

500

Coarse-grain-only
ML model

(40 runs, same init
conditions)

Truth

Our full-data TL
model

(40 runs, same init
conditions)

Note: it’s a
probabilistic model

TL makes better predictions.

* Robustly across multiple systems

Our full-data TL Coarse-grain-only ML
model model
Kuramoto-Sivashinsky 91.73 37.74
Brusselator 384.64 -555.40
Lorenz 96 11.51 4.37

We evaluate using hold-out log-likelihood, a standard probabilistic procedure from ML.

15 randomly initialized models were trained and the average hold-out log-likelihood is
shown. o

TL makes better predictions.

* Robustly dClroSS multiple systems Standard Errors in mean are far smaller for TL model

* Gives more reliable training

Our full-data TL Coarse-grain-only ML

model model
Kuramoto-Sivashinsky 91.73 4+ 0.62 37.74 + 16.50
Brusselator 384.64 + 27.41 -555.40 + 486.39
Lorenz 96 11.51 + 0.64 4.37 1+ 1.07

We evaluate using hold-out log-likelihood, a standard probabilistic procedure from ML.

15 randomly initialized models were trained and the average hold-out log-likelihood is
shown. -

Details of approach:
example with Recurrent Neural Network

Details of approach:
example with Recurrent Neural Network

Xhi, Xhi, Xhi,
\ 1. Train model to reproduce

high-resolution evolution
Xihig, X, X0, .

High-res
output block

High-res
output block

Recurrent Recurrent I
block

hy ———

l
X ow1

Details of approach:
example with Recurrent Neural Network

| |

2. New task-specific layers are
trained to reproduce low-

resolution evolution Xlow,,
}(lowl’)(low2 L

Lt

l
X OW1

Takeaways

* By framing the problem as a transfer-learning task, we’ve shown how to
learn from all high-resolution data to create low-resolution emulators.

* The approach performs particularly well in data-scarce scenarios, acting as
a regularizer.

e Our simple two-step approach can be easily tested on various problems.
And now must be tested on operational models. Happy to help anyone
interested in applying this to their problems.

* There is a still a gap between the spread and error in our forecasts, and it is

unclear if that is closable by this approach. Raghul Parthipan
rp542@cam.ac.uk

12

Supporting slides

RNN model equations

For our RNN, the hidden state is shared and its evolution is described by h, ., = fy(h,, X,) where
h, € R and f; is a GRU cell [36]. We model the low-resolution data as

Xe41 = Xt + go(het1) + oz (1)
and the high-resolution as
Y1 =Y, +jg(heyy) + pw, (2)

where the functions gy and j, are represented by task-specific dense layers, z, ~ N(0,I) and
w, ~ N(0,I). The learnable parameters are the neural network weights # and the noise terms
o € R! and p € R'. Further details are in Appcndix@.

14

Details on dynamical systems

For the KS and Brusselator, our low-resolution data, X;, is a spatio-temporal averaging of the high-resolution, Y;,

as per standard coarse-graining approaches.

For the L96, the system itself makes a separation between low- and high-resolution variables.

B.1 Kuramoto-Sivashinsky

The Kuramoto-Sivashinsky equation [45,/46] models diffusive-thermal instabilities in a laminar flame
front. The one-dimensional KS equation is given by the PDE

du _’/(’)“u _Pu u(’)u 3)
ot 9zt Ox? Ox

on the domain € = [0, L] with periodic boundary conditions «(0,t) = u(L,t) and v = 1. The case
L = 22 is used here as it results in a chaotic attractor. Equation|3]is discretized with a grid of 100
points and solved with a time-step of §¢ = 0.00005 using the py-pde package [47]. The data are
subsampled to At = 0.002 to create Y. The first 10,000 steps are discarded.

B.2 Brusselator

The Brusselator [48] is a model for an autocatalytic chemical reaction. The two-dimensional
Brusselator equation is given by the PDEs

(;))_z: = DoV?u +a — (1 + b)u + vu® 4)
ov . .

(—L — Dlvz‘v + b'u — 'Uuz (5)
ot

on the domain 2 = [[0, 64], [0, 64]] with Dy = 1,D; = 0.1,a = 1 and b = 3. The parameters lead
to an unstable regime. Here, Dy = 1 and D; = (.1 are diffusivities and a and b are related to reaction
rates. Equations are discretized on a unit grid and solved with a time-step of 4¢ = 0.0002 using
the py-pde package |47]. The data are subsampled to At = 0.002 to create Y,. The first 10,000 steps
are discarded.

B.3 Lorenz 96

The Lorenz 96 is a model for atmospheric circulation [49]. We use the two-tier version which consists
of two scales of variables: a large, low-frequency variable, X, coupled to small, high-frequency
variables, Y; 1. These evolve as follows

5 i kJ
k _ - - —
R S R
j:]lk l)‘l
dY; he
d-;"‘ = —cbYj41 k(Yis2,x — Yi-1,k) — Yk — %Xk D

where in our experiments, the number of X variables is K = 8, and the number of Y; ;. variables
per X is J = 32. The value of the constants are setto h = 1, b = 10 and ¢ = 10. These indicate
that the fast variable evolves ten times faster than the slow variable and has one-tenth the amplitude.
The forcing term, F', is set to F' = 20. Equations|6H{7] are solved using a fourth-order Runge-Kutta
scheme with a time-step of 4t = 0.001. The data are subsampled to At = 0.005 to create X, and
Y. The first 10,000 steps are discarded.

