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Abstract

With today’s pressing climate change concerns, the widespread integration of low-
carbon technologies such as sustainable generation systems (e.g. photovoltaics,
wind turbines, etc.) and flexible consumer devices (e.g. storage, electric vehicles,
smart appliances, etc.) into the electric grid is vital. Although these power entities
can be deployed at large, these are highly variable in nature and must interact with
the existing grid infrastructure without violating electrical limits so that the system
continues to operate in a stable manner at all times. In order to ensure the integrity
of grid operations while also being economical, system operators will need to
rapidly solve the optimal power flow (OPF) problem in order to adapt to these
fluctuations. Inherent non-convexities in the OPF problem do not allow traditional
model-based optimization techniques to offer guarantees on optimality, feasibility
and convergence. In this paper, we propose a data-driven OPF solver built on
information-theoretic and semi-supervised machine learning constructs. We show
that this solver is able to rapidly compute solutions (i.e. in sub-second range) that
are within 3% of optimality with guarantees on feasibility on a benchmark IEEE
118-bus system.

1 Introduction

The modern grid is undergoing unprecedented changes that are mainly motivated by climate change
concerns. In an effort to significantly reduce carbon footprint from the electricity sector, system
operators aim to widely integrate sustainable generation systems and accommodate smart consumer
appliances (1; 2). However, as these are highly variable in nature and if not properly coordinated,
inefficiencies are inevitable and the integrity of grid operations may be compromised (3). The
system operator will need rapidly and frequently solve the optimal power flow (OPF) problem to
account for the changing grid parameters so that these power entities operate economically while
maintaining system limits. The main challenge in achieving this lies in the non-convexities introduced
by power flow constraints that capture the electrical interdependencies and limits of the grid in the
OPF formulation. It is well known that solving a non-convex problem directly is NP-hard (4).

As such, existing literature on solving the OPF problem in a tractable manner can be loosely catego-
rized into model-based and data-driven methods. With model-based techniques, one approach is to
employ convex relaxations (5) to eliminate non-convex constraints and then solve the relaxed problem
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directly. As the grid is operating close to its limits, these relaxations can result in infeasibilities and
violations of grid constraints. Heuristic approaches such as (6; 7; 8) are commonly employed to solve
the original non-convex OPF. However, these cannot guarantee optimality, convergence and/or feasi-
bility of the computed solutions. On the other hand, data-driven techniques such as (9; 10; 11; 12; 13)
have been proposed in the literature. One subset of these approaches utilize supervised learning
constructs (9; 10) where labelled datasets containing inputs (i.e. grid parameters) and corresponding
outputs (i.e. optimal setpoints of active power entities) are utilized to train the proposed solvers.
The main difficulty with this approach is curating the labelled datasets as generating the optimal
outputs for various input combinations via traditional solvers is time-consuming, not tractable and
may not be actually optimal or feasible. Another set of data-driven approaches (11; 12; 13) utilize
both machine learning constructs and traditional solvers where partial solutions are computed by
machine learning models and the remaining solutions are “completed" by traditional solvers in order
to guarantee feasibility. Since traditional solvers are looped into the computational process, these can
lead to computational delays and non-convergence issues.

In this paper, our contributions are four-fold: 1) We propose a data-driven approach based on
semi-supervised learning to build an OPF solver where the training dataset needs to contain only
feasible outputs - not optimal outputs (this data is readily available as the grid always operates in
feasible regions that are not necessarily optimal); 2) We combine information theoretic constructs
with machine learning model to implicitly extract information about the costs of various solutions;
3) We leverage on the generator and discriminator modules in the generative adversarial networks
(GANs) to synthesize feasible outputs and check the feasibility of these; and 4) We demonstrate the
efficacy of our proposal on a benchmark IEEE 118 bus system. With a fast OPF solver like ours,
once trained, inferencing can take place very quickly and this is conducive to allowing for system
operators to rapidly and economically react to changes in the electric grid introduced by highly
variable sustainable energy systems.

2 Methodology

The proposed machine learning model is composed of two main modules: 1) Synthesis of feasible
solutions for specific inputs; and 2) Implicit learning of solution costs. Various components of the
proposed model are presented in Fig. 1. In the following, these components will be detailed.

Figure 1: Latent code c and cost of solutions.

In order to synthesize feasible solutions for various grid parameters that will serve as inputs, the
continuous conditional GAN (CCGAN) will be utilized. The reasons for using this machine learning
model are two-fold. First, as the grid parameters are continuous inputs and the original GAN model
(14) does not accept data inputs, we treat the inputs of the OPF problem as continuous conditions.
The second reason is that the general architecture of the GAN consists of a discriminator component
D that can be leveraged to verify the feasibility of the solutions synthesized. Training datasets
containing various grid parameters and corresponding feasible operational setpoints and grid states
are utilized. After training, the generator G in the CCGAN will learn the conditional distribution of
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the feasible outputs for the corresponding inputs and the discriminator aims to distinguish outputs
from the actual training dataset versus the synthetic ones generated by the generator. During training,
the generator and discriminator will aim to maximize the losses of one another. The loss function
LCCGAN pertaining to the CCGAN is a combination of the loss function presented in reference (15)
and Wasserstein loss with gradient penalty(16) that allows for the stable training of the system.

LCCGAN = E
y∼Pd(y|x)

[D(ỹ|x)]− E
z∼Pn

[D(G(z, c|x))] + δ E
z∼Pn

(||∇G(z,c)|xD(G((z, c)|x))|| − 1)2

+ λ E
x,z,c
∇x||G((z, c)|x)||

where z is an M dimensional random variable drawn from the Gaussian distribution Pn (this allows
for variability in the outputs synthesized by G), input x is the input to the OPF problem, y is the
output that is feasible for the grid under the conditions imposed by x, c is a single-dimensional latent
code correlated to the cost of y, G synthesizes feasible outputs to the OPF problem, D outputs a
probability corresponding to whether its input (i.e. y) is real or synthesized for the conditions imposed
by x along with feasibility scores for each constraint in the OPF problem, Pd is the real conditional
distribution of the output y given x, G((c, z)|x) is y, ỹ is set to either the real ŷ or synthetic y output
with equal probability, and δ and λ are non-negative weights. The first, second term and third terms
reflect the Wasserstein loss and the last term reflects the gradient penalty. Once this module is trained,
a feasible output will be synthesized by G for inputs z, c and x.

To further improve the feasibility of the outputs from G, a physical loss term Lph is added.

LPh = E[||H(x, ỹ)−K||2] + E
i∈B

[max(0, Ri(x, ỹ)− Pi)]

+ ν(E[| ||H(x, ỹ)−K||2 −D1(ỹ|x)|] +
∑
i∈B

E[| ||Ri(x, ỹ)− Pi||2 −Di(ỹ|x)|])

where ỹ is the output from G given x. H(x, ỹ) = K are equality constraints (e.g. power balance
constraints) and Ri(x, ỹ) ≤ Pi are B inequality constraints (e.g. current limits, voltage limits, etc.)
in the OPF problem. Detailed formulation of the OPF problem is listed in the Appendix. The first
and second terms impose penalties for violating these constraints. The third and fourth term ensure
that the feasibility scores outputted by D captures the degree of violations of equality and inequality
constraints. ν is a positive weight term.

The final component LC of the loss function aims to linearly correlate the latent code c with the cost
of solutions generated by G.

LC = E
c∼Pc,z∼Pnoise

||(Q(G(c, z|x)))− c||2

where Q is a module that is added to the CCGAN in the proposed ML model. This loss term
encapsulates the learning of mutual information pertaining to the cost of the solution with the latent
code c. This is an approximation of mutual information as outlined in reference (17). Pc is a uniform
distribution used to sample c.

Now, all loss terms are combined as follows to form the complete loss function L.

L = LCCGAN + µLPh + ηLC

µ and η are non-negative weights assigned to various components of the loss function. Implementation
details of the components G, D and Q are presented in the Appendix.

Figure 2: Latent code c and cost of solutions.
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Once the proposed ML model is trained, a systematic search of samples from G using the latent code
c is conducted to find solutions that are associated with the low costs while maintaining constraint
feasibility as depicted by the feasibility scores from D. Since Q is designed to correlate actual cost
of solution ỹ with c in a nearly linear manner where c takes values in the interval [−1, 1], the search
for c that will result in low cost will take place in the lower end of the interval [−1,−ε] where ε is
a small positive value. Fig. 2 illustrates the relationship between c and solutions generated. The
search is designed to select low values of c and randomly sampled z that result in ỹ that are feasible
as indicated by D. With our proposal, knowledge of grid structure and cost of power generation will
not be necessary during inferencing.

3 Result

The proposed model was trained and tested on benchmark IEEE 118-bus power system. The training
dataset has been generated using MatPower’s load flow analysis that computes feasible outputs. In
order to compare the degree of optimality of our proposal, we use MatPower’s OPF solver which
uses the interior point method (IPM) and semi-definite programming (SDP) from Sedumi (18) for
solving the original OPF. The average of time entailed in computing the solutions with the IPM
solver was around 10 seconds. With the SDP solver there were convergence issues and required
almost 100 seconds on average for the cases that did converge. Table 1 lists the results obtained with
our proposal. The first column lists the number of samples queried from the generator. The second
column quantifies the gap of the computed solution from the optimal solution determined by the
SDP solver from Sedumi. The next column lists the gap of the computed solution from the optimal
solution computed by the IPM solver from Matpower. The solutions of the solutions computed by
IPM and SDP were comparable. The fourth column lists the average time entailed in computing the
solution with our proposed model after training. The last column indicates whether or not the final
solution is feasible from the perspective of load flow analysis from Matpower.

It is clear from these results that the time entailed in computing a solution with our model is a fraction
of a second. Moreover, the optimality gap is very small (within 3%). All solutions computed are also
feasible. These are superior qualities of an OPF solver. With the speed supported by the proposed
algorithm, perturbations and unexpected fluctuations from renewable and sustainable energy systems
can be quickly accounted for by system operators. The outputs can be readily utilized by the system
operators to ensure that the grid remains operational within stable regimes while maintaining efficient
operations.

Table 1: Comparison with traditional solvers for IEEE 118-bus system.
M Gap to SDP(%) Gap to IPM(%) Time(s) Feasibility

50 3.97±0.49 3.79±0.47 0.12 X
100 3.87±0.48 3.27±0.39 0.21 X
200 3.63±0.45 3.44±0.42 0.27 X
500 3.52±0.44 2.97±0.38 0.29 X
1000 3.18±0.38 3.00±0.37 0.34 X
3000 2.90±0.35 2.70±0.33 0.56 X
5000 2.92±0.35 2.71±0.35 0.65 X

4 Conclusions

In this paper, we present a novel OPF solver that is based on machine learning constructs, information
theoretic constructs and domain knowledge. This solver has been demonstrated to be extremely fast
especially when compared with traditional solvers like SDP and IPM while guaranteeing feasibility.
Furthermore, the solutions are tuned to be near-optimal with the strategic selection of the latent code
that implicitly encodes details about the cost of the solutions synthesized. This solver does not require
datasets containing input to optimal output pairs. This allows system operators to use abundantly
available datasets containing feasible grid states and measurements to train the OPF solver. The
speed of inferencing allows grid operators to practically account for the fluctuations introduced by
sustainable energy sources and thus the high proliferation of these devices. This directly supports
climate change goals set by policy makers, system operators and the public in general.
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Appendix

A. Description of Optimal Power Flow

The OPF problem formulation POPF based on the bus injection model is presented here.

POPF :min
PGi

∑
i∈N

Cg(PGi)

s.t. ∀ i ∈ N :
∑
j∈N

Re{Vi(V
∗
i − V ∗j )yij} = PGi − PDi [C1]

∑
j∈N

Im{Vi(V
∗
i − V ∗j )yij} = QGi −QDi [C2]

Pmin
Gi
≤ PGi ≤ P

max
Gi

[C3]

Qmin
Gi
≤ QGi ≤ Q

max
Gi

[C4]

V min ≤ |Vi| ≤ V max [C5]

φmin ≤ φi ≤ φmax [C6]
|Vi(V

∗
i − V ∗j )y∗ij | ≤ Smax

i,j ∀ j ∈ Ni [C7]

[C1] and [C2] reflect the real and reactive power balance on bus i. [C3]-[C7] reflect limits on real
and reactive power generation, bus voltage magnitude, phase angles, and branch flows. Constraints
[C1], [C2], [C5], and [C7] are non-convex.

Table 2: Parameters and Variables in OPF Problem
Name Notation Dimensions

Total number of buses and generator N and G R
Set of all buses N RN

Set of buses that are incident to bus i Ni R|Ni|

Objective function Cg (Non-decreasing) R
Real and reactive power generated by generator i PGi , QGi R
Real and reactive power demand on bus i PDi , QDi R
Nodal admittance between bus i and j yij C
Voltage at bus i Vi C
Lower and upper limits of real and reactive power Pmin

Gi
, Pmax

Gi
, Qmin

Gi
, Qmax

Gi
R

on bus i
Lower and upper limits of bus voltage magnitude V min, V max R
Lower and upper limits of bus angles φmin, φmax R
Maximum limit on magnitude of complex Sij

power flowing on line (i, j)
Active Power Demand PDi N
reactive Power Demand QDi N
Upper and lower limits on power generation
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B. Implementation of the Proposed Model

The proposed machine learning model is implemented using Tensorflow and Keras 2.7.0. To accel-
erate the training process, models are trained and tested on Google Colaboratory, where Graphical
Processing Units (GPUs) and Tensor Processing Units (TPUs) computing resources are available.
Table 3 summarizes the model’s architecture for IEEE 118-bus system. As discussed in Section 2, the
proposed algorithm contains three neural networks: G, D and Q. Their input and output dimensions,
hidden layers, activation, etc., are listed. Model D executes two tasks: one is to assign a feasibility
score, and the other is to identify real/synthetic inputs. The two tasks share 4 hidden layers (HL) and
separately calculate their outputs in the last 3 layers. Model Q has a much simpler structure for the
expectation of extracting a linear-like correlation between code c and output y, so the cost value. c is
sampled uniformly in the range [−1, 1], and z ∈ R200 is sampled from the normal distribution.

Table 3: Architecture of the Proposal(118-bus system)
Model G

Input Layer Hidden Layer Output Layer Activations
x:236 nodes 256 nodes y:344 nodes LeakyRelu for 4 HL
c:1 nodes 128 nodes 108 for P/Q generation Sigmoid for output
z:200 nodes 64 nodes 236 for |V | and φ

32 nodes

Model D

Input Layer Shared Hidden Layer Seperate Hidden&Output Layer Activations
x:236 nodes 512 nodes 32 nodes LeakyRelu for 7 HL
y:344 nodes 256 nodes 16 nodes Linear for output

128 nodes 8 nodes
64 nodes Output of Dr:1

Output of Df :2

Model Q

Input Layer Hidden Layer Output Layer Activations
y:54 nodes 4 nodes ĉ : 1 LeakyRelu for HL

tanh for output

D. Proposed Dataset for Power Flow Studies

In the literature, supervised machine learning-based algorithms (9; 12) require a dataset with power
demand and optimal solutions produced by existing OPF solvers. However, this work relaxes the
assumptions of having this optimal dataset, and the data with only feasible solutions are sufficient.
We are releasing the dataset PFFDS (Power Flow Feasible Dataset) with this paper. As the IEEE
118-bus system only provides a snapshot of the grid, we follow the common practice in existing
literature (9; 12; 23) for generating power demand PDi

and QDi
in the [80%,120%] range. Also, the

branch flow limits are not included in the IEEE bus-118 benchmark, so a testing constraint in (25)
is used. A total number of 70,000 scenarios of demand/solution pairs are included in this dataset.
Furthermore, the stochasticity of renewable energy resources(wind and photovoltaic) is modeled in
the data generation process based on their ratio in the United States in 2020 (26). These can be seen
as random perturbations integrated into constraint [C1] in the formulation of OPF in Appendix. A.
The dataset can be accessed on the link [placeholder].
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