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Our Contributions

Repair LANDSAT 7 imagery with Convolutional Neural Processes

State-of-the-art inpainting performance on in-distribution and especially
out-of-distribution (OOD) inpainting

Strong performance in climate downstream tasks



Satellite Imagery: LANDSAT 7

e LANDSAT 7 - images collected by NASA/USGS via the
LANDSAT programme

e High-resolution (30m) images publicly available
(massive, terabytes!)

e Scanline corrector (SLC) failure on 31st May 2003
> missing values at scanlines

Figure 1: Snapshot in Kenya. Taken on 3rd January, 2005, after the
SLC failure



Data from Google Earth Engine

e LANDSAT 7 Satellite images extracted using Google Earth Engine APl (Gorelick et al. 2017)
64

e RGB channels/bands
e 256x256 images downloaded
e Cropped to 128x128 and 64x64 for training
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Data Processing for Training

e Post-2003 images used to extract
scanline bitmasks

e Pre-2003 uncorrupted images used
for training

Pre-2003 image - Kenya

= Extract scanline from post-2003 images
= Apply scanline mask to pre-2003 images for training



Corrupted

Baselines

Navier-Stokes

Fast

[X] Noinformation sharing between images

U-Net

Navier-Stokes

U-Net
Expressive and works quite well for a lot of problems

OOD requires large datasets and data augmentation

PartialConv

PartialConv

Convolution takes into account of masks/missing pixels  iginal

Requires large datasets and long training times




Neural Processes for Inpainting

e Satellite images are different regression problems
o Different location and time
e Small dataset for each task

Context points are
non-scanline pixels
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Convolutional Neural Processes

Translational equivariance

Convolutional Conditional Neural Processes
Convolutional Latent Neural Processes

Trained using Maximum Likelihood
Multi-Scale Structural Similarity (MS-SSIM) Loss
(Wang et al. 2003) generates sharper images
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Inpainting results

e  ConvNPs perform well both for in and out-of-distribution images and outperform baselines

®  ConVvLNP performs the best on average when also compared to ConvCNP

e  Good generalisability of Meta-Learning is a result of treating input images as different tasks
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Experiment 2:
Water Body Segmentation Downstream Task

e Image segmentation of seasonality of water in Canada

e Classify pixels into 3 classes based on 3 months of imputed
satellite images

e UNet with 3D convolutions and masked cross entropy loss
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Conclusion and Discussion

ConvNPs successful at inpainting in-distribution and out-of-distribution
Take advantage of different spatiotemporal structure of satellite images

Global inpainter for LANDSAT 7 by only training small subset of locations

Bigger scanlines

Cloud removal

OO

A wider array of downstream tasks
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