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Our Contributions

Repair LANDSAT 7 imagery with Convolutional Neural Processes

State-of-the-art inpainting performance on in-distribution and especially 
out-of-distribution (OOD) inpainting 

Strong performance in climate downstream tasks
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Satellite Imagery: LANDSAT 7

● LANDSAT 7 - images collected by NASA/USGS via the 
LANDSAT programme

● High-resolution (30m) images publicly available 
(massive, terabytes!)

●  Scanline corrector (SLC) failure on 31st May 2003        
→ missing values at scanlines

Figure 1: Snapshot in Kenya. Taken on 3rd January, 2005, after the 
SLC failure
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Data from Google Earth Engine
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● LANDSAT 7 Satellite images extracted using Google Earth Engine API (Gorelick et al. 2017)
● RGB channels/bands
● 256x256 images downloaded
● Cropped to 128x128 and 64x64 for training

● In-distribution country
○ Kenya

● Out-of-distribution countries
○ UK
○ Brazil
○ Nepal
○ Norway
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Data Processing for Training

● Post-2003 images used to extract 
scanline bitmasks

● Pre-2003 uncorrupted images used 
for training

Apply scanline mask to pre-2003 images for training 

Extract scanline from post-2003 images 

Post-2003 image - Kenya

Pre-2003 image - Kenya
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Baselines

Navier-Stokes 
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U-Net

PartialConv

Fast

No information sharing between images

Expressive and works quite well for a lot of problems

OOD requires large datasets and data augmentation

Convolution takes into account of masks/missing pixels

Requires large datasets and long training times



Neural Processes for Inpainting

● Satellite images are different regression problems
○ Different location and time

● Small dataset for each task

Context points are 
non-scanline pixels

Target points are entire 
image (for continuity)
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Convolutional Neural Processes

● Translational equivariance
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● Convolutional Conditional Neural Processes
● Convolutional Latent Neural Processes

● Trained using Maximum Likelihood
● Multi-Scale Structural Similarity (MS-SSIM) Loss 

(Wang et al. 2003) generates sharper images



Inpainting results

9

● ConvNPs perform well both for in and out-of-distribution images and outperform baselines
● ConvLNP performs the best on average when also compared to ConvCNP
● Good generalisability of Meta-Learning is a result of treating input images as different tasks 



Experiment 2:
Water Body Segmentation Downstream Task
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● Image segmentation of seasonality of water in Canada
● Classify pixels into 3 classes based on 3 months of imputed 

satellite images
● UNet with 3D convolutions and masked cross entropy loss



Conclusion and Discussion
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ConvNPs successful at inpainting in-distribution and out-of-distribution

Take advantage of different spatiotemporal structure of satellite images

Global inpainter for LANDSAT 7 by only training small subset of locations

Bigger scanlines

Cloud removal

A wider array of downstream tasks
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