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Abstract

The widespread availability of satellite images has allowed researchers to monitor
the impact of climate on socio-economic and environmental issues through exam-
ples like crop and water body classification to measure food scarcity and risk of
flooding. However, a common issue of satellite images is missing values due to
measurement defects, which render them unusable by existing methods without
data imputation. To repair the data, inpainting methods can be employed, which
are based on classical PDEs or interpolation methods. Recently, deep learning
approaches have shown promise in this realm, however many of these methods do
not explicitly take into account the inherent spatio-temporal structure of satellite
images. In this work, we cast satellite image inpainting as a meta-learning problem,
and implement Convolutional Neural Processes (ConvNPs) in which we frame each
satellite image as its own task or 2D regression problem. We show that ConvNPs
outperform classical methods and state-of-the-art deep learning inpainting models
on a scanline problem for LANDSAT 7 satellite images, assessed on a variety of
in- and out-of-distribution images. Our results successfully match the performance
of clean images on a downstream water body segmentation task in Canada.

1 Introduction

Monitoring climate change requires the analysis of land features at a granular spatio-temporal level.
With the surge of computational methods using remote sensing data, satellite images have been
widely used in instances such as flood detection [[1] and crop yield modelling [2]. The LANDSAT 7
satellite [3] is an invaluable source of satellite images to understand these trends and take appropriate
action based on accurate climate models due to its long temporal coverage and high spatial resolution.
However, as a result of a mechanical fault in the satellite’s scanline corrector (SLC), satellite images
taken from May 31, 2003 onward suffer from lines of missing pixels (Figure[3). As they occupy a
significant area of the satellite images (about 20% of the data), the images obtained from LANDSAT
7 lost much of their research use in climate-related downstream tasks as the scanlines significantly
impair the performance of computational methods using the corrupted images. However, existing
ML or traditional satellite image models are able to process imputed images as opposed to retraining
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models or explicitly taking into account missing data, which is currently required for corrupted
images.

Image inpainting (gap-filling) aims to fill the corrupted pixels in an image with values that resemble
the original pixel values as closely as possible. Many deterministic methods have been proposed in
the literature, that use higher order differential equations [4H6]. Moreover, recent advances in deep
learning have shown promising results such as U-Net [7], which was initially used for biomedical
image segmentation, and Partial Convolutions (PartialConv) [8]], which is a modification to the
classical convolutional layer to make it suitable for inpainting. One drawback of the traditional
deep learning methods is that they treat all images as a single task and do not take into account
spatio-temporal differences between images, where different predictive functions could better suit
different tasks or images. This kind of problem is better suited to meta-learning methods, which
learn task-specific representations and are better at capturing the differences between various inputs.
Garnelo et al. [9] introduced a meta-learning approach called Conditional Neural Processes (CNPs)
that uses an encoder-decoder architecture to learn a distribution over predictive functions. Gordon
et al. [10] and Foong et al. [11]] introduced Convolutional Conditional Neural Processes (ConvCNPs)
and Convolutional Latent Neural Processes (ConvLLNPs) respectively, which are better suited for
image inpainting tasks due to their translational equivariance property. These Convolutional Neural
Processes are shown to exhibit very good few-shot and zero-shot learning capabilities as well, which
has been demonstrated for inpainting weather data [[11}[12].

In this paper, we show that ConvNPs can be used for satellite image inpainting, particularly to correct
the scanlines of LANDSAT 7 images. We use an MS-SSIM similarity score loss function [[13]] for
sharper results, which preserves important land features for segmentation or regression tasks. We
show that our ConvNPs outperform state-of-the-art image inpainting models with a relatively small
dataset (training set of 800 images with dimensions 128x128 or 64x64). ConvNP models also show
good performance for both in-distribution (inpainting images in the same country as the training
dataset) and out-of-distribution (OOD) satellite images (considered as zero-shot tasks, inpainting
images in a different country than the training dataset). In addition, via an OOD downstream water
body segmentation problem, we show that ConvNP imputed images achieve similar performance as
compared to the clean images in the training phase.

2 Methodology

We cast satellite inpainting as a meta-learning problem. The pixel locations on the grid and RGB pixel
values at those locations are denoted as = € R? and y € R? respectively. Each image corresponds
to a task, which could also be viewed as a 2D function [14, [15]. At prediction time, the observed
set of pixels or "context set" is denoted by z¢, yco. The aim is then to predict the target values yr at
locations z7 (in our case the entire image is predicted to avoid discontinuities). We argue that taking
the meta-learning viewpoint allows to explicitly take into account the spatio-temporal variations for
each task and thus promotes efficient learning as opposed to classical inpainting methods like U-Net
and PartialConv which implicitly distinguish between different tasks and require enormous training
sets with data augmentation.

Meta-learning methods [[16}[17] aim to solve the problem of using a distinct function at inference
time to predict target set values. The NP family [9, [18] architecture employs an encoder that outputs
a task-specific representation of the context points, which can then be queried with a decoder network
to give a task-specific output function distribution. Gordon et al. [10] introduced translational
equivariance with ConvCNPs, making it more suitable for image data (on-the-grid data) with the
use of CNNs. Foong et al. [[11]] presents Convolutional Neural Processes (ConvNPs, in this paper
referred to as Convolutional Latent Neural process or ConvLNP) that utilise a latent variable to
capture information from the context set. This results in a model that adjusts the predictor function
depending on the context set of the task. One advantage of meta-learning is that the predictive
functions use both the information from the current context set of the task as well as the information
that is shared across tasks, making the method well-suited for OOD tasks. This allows modelling
of heterogeneous function distributions and is a beneficial property for satellite image inpainting as
they have multiple zero-shot tasks for different spatial locations and times, that are not seen during
training. See Appendix [D]for in-depth model details.



3 Experiments

3.1 Inpainting LANDSAT 7 images

We study the performance of ConvCNPs and ConvLNPs for the task of inpainting LANDSAT 7
scanlines. We compare the results to the baseline models consisting of Navier-Stokes (NS) inpainting
algorithm, U-Net and PartialConv, for which the latter two are vastly popular and yield state-of-the-art
results on a variety of image inpainting problems. We train the ConvCNP, ConvLNP and U-Net
using the MS-SSIM loss function, and for PartialConv we use the loss proposed in Liu et al. [§].
We conduct extensive experiments to measure the in-distribution performance of each model by
inpainting satellite images of the same country, as well as OOD performance on a set of different
countries (zero-shot prediction over unseen spatial locations). To evaluate the performance of all
the models, we compute the MS-SSIM between the predictions and the ground truth images and the
MSE score on just the scanline pixels. The MS-SSIM is bounded in [0, 1], where values closer to 1
show that the images are more similar.

Data The training images are acquired from the LANDSAT 7 Satellite before the scanlines are
present in the images. The training set consists of 1000 images from Kenya with dimensions 128x128
and 64x64. See Appendix [C]for a detailed description of the data collection process. The scanlines
are acquired from 100 Kenya images post-SLC failure. We perform 5-fold cross validation with a
80%-20% train-test ratio for each split. During training, a scanline is applied to each image as a mask
chosen randomly from the 100 scanlines extracted. In-distribution inpainting performance is reported
using unseen images from Kenya and out-of-distribution inpainting performance is reported using
unseen images from UK, Nepal, Brazil and Norway.

Results. The MS-SSIM and scanline RMSE scores for 128x128 images can be seen in Figure
Scores for 64x64 images and examples of 128x128 image imputations can be found in Appendix [B]
As can be seen both empirically and by the MS-SSIM and MSE scores, ConvNPs perform well both
in-distribution and OOD with ConvLNP performing the best overall with its latent flexibility. U-Net
achieve good results on the test set for the Kenya images it was trained on, but suffers in performance
on other countries, thus lacking the zero-shot capabilities of ConvNPs. PartialConv inpainted results
were blurry with discolouration and may need longer training time with a larger dataset to reflect the
performance of the original paper [8]]. The meta-learning approach treats input images as different
tasks and hence the variability between images and their characteristics is better accounted for. Note
that UK inpainting performance is artifically increased by the high cloud frequency, making it an
easier task. NS generally results in blurry scanline imputations, especially between the border colours
of neighbouring pixels. It is also notable that NS is not a machine-learning algorithm, hence it is
location agnostic and there is no concept of in- and out-of-distribution datasets.

3.2 Climate Downstream task

OOD performance of imputed results has been evaluated on a downstream segmentation task to
classify seasonality of water in Canada. This involves classifying all pixels into three classes: "not
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Figure 1: Mean and standard error of the MS-SSIM scores (left) and MSE scores (right) on scanlines
over 5-fold cross validation for predicting over Kenya and OOD datasets for images of dimension

128x128 (64x64 results in Figure[6).
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Figure 2: Water segmentation task percentage pixel error on 128x128 images.

"non

water", "seasonal water" and "permanent water" based on three months of satellite images at each
location in 2000. Due to lack of data around water sources, a masked binary cross entropy loss is
applied to evaluate loss on only labelled pixels. A 3D convolution operation is applied to merge the
temporal information, followed by a U-Net for segmentation. Clean images are downloaded from
Google Earth Engine [19]. The full set of scanlines are applied randomly to corrupt images and are
imputed by the different methods. The segmentation model is trained on clean images and evaluated
over imputed images for each model, clean images, and corrupt images (scanline). The percentage
pixel errors for segmentation over 5-fold cross validation is reported in Figure[2] ConvNPs can be
seen to outperform other deep learning baselines and performs very similarly to clean images, which
the segmentation models were trained on. ConvNP imputation performance is also comparable to
that of NS (which is not trained on any particular location) in the OOD setting as it does not change
non-scanline pixels and ConvNPs appear to have slight discolouration. This shows the use of imputed
results for existing climate models and how imputed results can be used as a substitute for clean
images when not available.

4 Discussion and Conclusion

We find that ConvNPs are successful at inpainting LANDSAT 7 satellite images corrupted by
scanlines in both in-distribution and out-of-distribution tasks, outperforming classic and state-of-
the-art inpainting methods. This enables the use of LANDSAT 7 data in existing models solving
climate-related tasks just by imputing results as shown in the water body segmentation task. When
models are trained on corrupted images, their performance is only slightly lower than that of models
trained on clean images. A potential reason for such behaviour is the high entropy nature of these
images, leading to CNNs having difficulty learning. In this work, the main success is in improving on
existing inpainting models and allowing for easy integration of cleaned LANDSAT 7 data to monitor
climate trends.

In an upcoming work, we intend to make improvements to LANDSAT 7 downstream models and
measure the performance of models trained on imputed results. The main idea relies on training
a more diverse dataset while fine-tuning inpainting models on new locations to enhance out-of-
distribution imputations. Another line of effort involves trying other baselines like diffusion models
[20], making use of recent advances in ConvNPs to improve expressiveness [21} 22, [12] and to more
explicitly account for space-time considerations [23]]. The current work may readily be extended to
other inpainting tasks such as cloud removal and other downstream tasks to tackle climate change.
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Appendix

A Additional Images

(a) Before 31st of May 2003 (b) After 31st of May 2003

Figure 3: LANDSAT 7 images before and after the scanline corrector failure.

Figure 4: Kenya 1024x1024 by predicting on 64x64 patches with ConvCNP. (Left) Original image
(Right) Inpainted image.




B Imputation Results
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Figure 5: Inpainting predictions for all models on 128x128 images for all models over multiple
regions with thinner scanline set applied.).
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Figure 6: Mean and standard error of the MS-SSIM scores (left) and MSE scores (right) on scanlines
over 5-fold cross validation for predicting over Kenya and OOD datasets for images of dimension
64x64. Note that standard errors lower than 0.01 have not been visualised.
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C Data collection and preprocessing

LANDSAT 7 images are downloaded using the Google Earth Engine (GEE) API [24]. For this
paper, we focus solely on the visible RGB bands of the LANDSAT 7 satellite (B3, B2, B1) with
spatial resolutions of 30 meters. The images are sampled from a uniform spatial grid with a grid
spacing of 0.4 degrees longitude and latitude. They are downloaded with a dimension of 256x256
pixels, corresponding to a land area of approximately 59km?>. Due to computational limitations,
these images are cropped to 64x64 and 128x128, and model results are reported using these sizes.
Note that smaller satellite images could be patched together to perform a larger inpainting task as
seen in Figure

The images are extracted from specific dates and locations, and are divided into pre- and post-2003
(non-working SLC period). All pre-2003 data is from between 1999 to 2003. Post-2003 data
is collected from between 2003 to 2004. Images with missing pixels (alpha channel is present)
are filtered out for pre-2003 images. Satellite images collected from Kenya are used for training
the models. Satellite images collected from UK, Norway, Brazil and Nepal are used to test the
model’s capabilities on out-of-distribution (unseen, location-wise) images. UK images are sometimes
completely white due to the presence of clouds, which resulted in ‘better’ inpainting results across all
models. To create more challenging out-of-distribution tasks, Norway, Brazil and Nepal images are
filtered by only taking images where the middle 64x64 section had less than 90% white pixels (so the
cropped 64x64 dimension dataset also had less clouds). Post-2003 data is used to extract a set of 100
scanline bit masks from Kenya data to apply to un-corrupted pre-2003 images during training to have
access to the clean ground-truth. Some images had large sections of missing pixels, so the post-2003
images are filtered to have < 20% missing pixels, but also at least 100 missing pixels (set arbitrarily)
to ensure the presence of scanlines.

D Model details

In the meta-learning setting, during training, we learn a global parameter 8, which, given contexts
of a task, could also output a task-specific representation R,,. The global objective function is
given by E,, o [L(Dy(E¢(2c,,, Yo, ) (21, ), yr)]s with Dy (Ee(zc,,. ye,,))(@r,.) = fo,. (21,,),
where 6 = (1, &), E¢ encodes the context set (¢, y¢) to a task-specific representation, D,, decodes
the task-specific representation and target location to the output, and £ is a loss function.

Convolutional Conditional Neural Processes: Gordon et al. [[10] introduced translational equivari-
ance to the NP family [9} 18] through ConvCNPs, making it more suitable for image data (on-the-grid
data). With the same notation, we denote the original image as I and the context mask M, for which
[Mc);,; = 1if the pixel at location (z, j) is in the context set, and O otherwise. Our masked context
set is thus given by Z~ = Mo ® I. Concatenating the context mask and the masked context point,
we thus get ¢ = [M¢, Z¢]. Applying a convolution to ¢, we obtain the functional representation
R = Convg([Mc, Zc]), where Coonvg is the 2D convolution operator with positively-constrained
kernel parameters 6. We then apply the normalisation R(::¢) = R(1:¢) /RO This step is known as
SetConv (when not evaluated at the target points). We can decode R using a CNN, which includes
an absorbed MLP to map the output of the CNN at each location (4, j) to R? and gives j, the image
prediction.

Convolutional Latent Neural Processes: Foong et al. [11] presents the Convolutional Neural
Processes (ConvNPs, in this paper referred to as Convolutional Latent Neural process or ConvLNP)
that utilise a latent variable to capture information from the context set. It is similar in architecture to
the conditional neural process with the encoder-decoder architecture, but in the ConvLNP the encoder
outputs a distribution over the latent variable z with the SetConv representations: z ~ p(z|R). This
enables ConvCNPs to learn ‘richer joint predictive distributions’ [[L1] and handle multimodalities.
The full computational graphs for ConvCNP and ConvLNP are described in Figure

Training objective: Following Foong et al. [[11]], we use the maximum likelihood training objective
for the ConvNPs: £ = log p(yr|zr,C), but we instead use the MS-SSIM metric (Multi Scale
Structural Similarity, Wang et al. [25]]) between the mean predictions and ground truth images. MS-
SSIM is a structural similarity metric for images, and is widely used in the field of signal processing,



having shown empirically to increase sharpness of final prediction images. In the ConvLNP training
objective, the maximum likelihood approach uses sample estimates to approximate the likelihood of

the predictions: £ ~ + Zlel log p(yr|z, z7, C).

ConvNP training: Our implementation follows Dubois et al. [26]. Both ConvCNPs and ConvLNPs
use Resnet blocks in the encoder and linear MLPs in the decoder. The ConvCNP has a 10-layer
ResNet encoder with a representation size of 128 channels and the decoder MLP has 4 layers. It is
trained for 400 epochs, with batch size 8 and learning rate 10—, which decays exponentially by a
factor of 5. The ConvLNP model for 128x128 images is trained for 200 epochs with a batch size
of 4 (low batch size due to computational limitations) and during training, 4 samples are obtained
of the latent variable while during evaluation, 8 samples are used. For 64x64, the latent samples
are increased for ConvLNP, namely 16 latent samples are used for training and 32 are used during
inference. Both Resnets used in ConvLNP have 8 layers. Our code and data will be open-sourced
upon publication.
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