IBM Research # Image-Based Soil Organic Carbon Estimation from Multispectral Satellite Images with Fourier Neural Operator and Structural Similarity Ken C. L. Wong¹, Levente Klein², Ademir Ferreira da Silva³, Hongzhi Wang¹, Jitendra Singh⁴, Tanveer Syeda-Mahmood¹ ¹IBM Research Almaden, San Jose, CA, USA ²IBM Research, Yorktown Heights, NY, USA ³IBM Research, Rio De Janeiro, RJ, Brazil ⁴IBM Research, Gurgaon, HR, India ## Soil Organic Carbon (SOC) Estimation #### Soil organic carbon sequestration - The process of capturing and storing atmospheric CO₂ to soil through natural carbon cycle (e.g., plants) - Soils can sequester 1.85 petagrams (10¹⁵ grams) of carbon per year important for climate change mitigation - Effectiveness can be improved by proper land use monitoring and managing SOC level are important #### SOC estimation - Important for monitoring SOC level - Traditional soil sampling and lab tests impractical at a global scale - Estimation at a global scale can be achieved by satellite imaging Todd A. Ontl and Lisa A. Schulte. "Soil carbon storage." *Nature Education Knowledge* 3, no. 10 (2012). ## **Data** #### Data - Satellite data of MODIS (Moderate Resolution Imaging Spectroradiometer) from two satellites - Six spectral bands: blue, green, red, near infrared, and shortwave infrared (2 bands) - Provide information such as water, vegetation, soil moistures related to SOC level - Organic carbon data from SoilGrids (https://www.isric.org/explore/soilgrids) - Global gridded soil information - Goal: multimodal fusion of satellite data for SOC remote sensing ## **Fourier Neural Operator** - Fourier neural operator (FNO) Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." ICLR (2021) - Originally proposed to learn function mappings in PDEs (e.g., Navier-Stokes equations) - o Formulated in the continuous space based on the idea of Green's function - Neural operator: iterative updates $$v_{t+1}(x) \coloneqq \sigma\left(Wv_t(x) + (\mathcal{K}v_t)\left(x\right)\right) \text{ with } (\mathcal{K}v_t)\left(x\right) \coloneqq \int_D \kappa(x-y)v_t(y)\,dy, \ \forall x \in D$$ \circ FNO – efficient computation with Fourier transform: $(\mathcal{K}v_t)(x) = \mathcal{F}^{-1}(R)(\mathcal{F}v_t)(x), \ \forall x \in D$ Analogue to Green's function arnable weights in Fourier domain ## **FNO-DenseNet** #### FNO - Intrinsic zero-shot super-resolution, global receptive field - × Large number of parameters different weight matrices (R) at different locations in the Fourier domain - Number of weights proportional to image size - Our proposed FNO-DenseNet - Use shared weights in the Fourier domain reduce numbers of parameters by hundreds of times - Use the DenseNet idea to improve convergence and accuracy **FNO-DenseNet** ## **Loss Functions** - Loss functions - Pixel-based loss functions (e.g., MAE, MSE) did not work well in experiments - Structural similarity (∈[-1, 1]) measures difference in structural information - Compares the local luminance, contrast, and structures between two images - Considers interdependencies among local pixels (window) good for textural analysis SSIM($$\mathbf{x}, \mathbf{y}$$) = $\frac{1}{M} \sum_{j=1}^{M} \frac{(2\mu_x \mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$ DSSIM (Dissimilarity) loss for minimization $$DSSIM = 0.5 \times (1 - SSIM) \in [0, 1]$$ Weighted sum of MAE and DSSIM loss – provides the overall best results $$w \times \text{MAE} + \text{DSSIM}$$ ## **Experiments** - Tested four approaches - Random forest 10 trees, max depth of 10 - Modified V-Net (3 encoding blocks, 3 decoding blocks, initial filters = 16, params = 342K) - Original FNO (8 Fourier layers, 32 filters per layer, params = 34M) - Proposed FNO-DenseNet (8 Fourier layer, growth rate = 24 filters, params = 64K) 500 times fewer params - Data split (3059 samples) - Training 50% - Validation 20% - Testing 30% - Image augmentation - Rotation 30 degrees - Shifting 20% - Random flip - 80% chance to be transformed ## Results #### Metrics - RMSE root mean squared error (g/kg) - MAPE mean absolute percentage error (%) - SSIM structural similarity (∈[-1, 1], 1 is the best) #### Observations - FNO-DenseNet best results with smallest model size (64K params) - Random forest worst results - MAE-only loss good pixel-wise accuracy, bad structural similarity - DSSIM-only loss good structural similarity, bad pixel-wise accuracy - MAE + DSSIM loss good structural similarity and good pixel-wise accuracy X | Loss | MAE | | | DSSIM | | | MAE + DSSIM | | | |--|---|--|--|---|---|------|---|---|---| | Metric | RMSE | MAPE | SSIM | RMSE | MAPE | SSIM | RMSE | MAPE | SSIM | | Random forest
Modified V-Net
FNO
FNO-DenseNet | 2.50 ± 2.37 2.12 ± 2.26 1.97 ± 2.03 1.98 ± 2.09 | 45.40±46.30
30.12±23.00
28.08±21.13
27.24±19.25 | 0.07 ± 0.08
0.07 ± 0.06
0.10 ± 0.09
0.11 ± 0.10 | 2.21 ± 2.25 2.31 ± 2.34 2.16 ± 2.13 | 33.44 ± 22.23 35.57 ± 24.22 32.33 ± 19.48 | | 2.00±1.99
1.96±1.96
1.89 ± 1.75 | 29.79 ± 21.11 28.32 ± 18.29 27.75 ±18.12 | 0.17 ± 0.12 0.18 ± 0.13 0.18 ± 0.12 | X ## **Visual Comparison** Multispectral inputs ## Thanks! clwong@us.ibm.com