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Abstract

Land cover classification (LCC), and monitoring how land use changes over time,
is an important process in climate change mitigation and adaptation. Existing
approaches that use machine learning with Earth observation data for LCC rely on
fully-annotated and segmented datasets. Creating these datasets requires a large
amount of effort, and a lack of suitable datasets has become an obstacle in scaling
the use of LCC. In this study, we propose Scene-to-Patch models: an alternative
LCC approach utilising Multiple Instance Learning (MIL) that requires only high-
level scene labels. This enables much faster development of new datasets whilst
still providing segmentation through patch-level predictions, ultimately increasing
the accessibility of using LCC for different scenarios. On the DeepGlobe-LCC
dataset, our approach outperforms non-MIL baselines on both scene- and patch-
level prediction. This work provides the foundation for expanding the use of LCC
in climate change mitigation methods for technology, government, and academia.

1 Introduction

Land use/land cover (LULC) change has been recognised as a major contributor to the rise of
atmospheric carbon dioxide (CO2). Changes in LULC have significant affects on the carbon balance
within ecosystem services that contribute to climate change mitigation [9]. LULC remote sensing (RS)
techniques are widely used for areas such as sustainable development, crop health/yield monitoring,
deforestation, urban planning, and water availability [6, 12]. Due to the recent curation of large
volumes of accessible data, machine learning is seeing increased use in RS for Earth Observation
(EO). In Land Cover Classification (LCC), the objective of machine learning is to identify and
segment regions in satellite images according to a set of classes, e.g., agricultural land, urban land,
water, etc. Typically, this requires a segmented dataset — a collection of images that have already
been manually annotated with the different class regions. Creating these labelled datasets is a costly
process: time and care must be taken to accurately segment the regions. This had lead to bottlenecks
and concerns about a lack of datasets for machine learning in EO [1, 11]. In this work, we present an
alternative approach that does not require segmentation datasets. Our contributions are as follows:

1. We reframe LCC as a Multiple Instance Learning (MIL) regression problem, reducing the need
for segmentation labels whilst also preserving high-resolution data during training and inference.

2. We propose Scene-to-Patch MIL models that transform low-resolution scene labels to high-
resolution patch predictions for LCC.

3. We explore how different data and model configurations of our approach affect performance on
the popular DeepGlobe LCC dataset [6].1

The rest of this paper is laid out as follows. Section 2 provides the background to LCC, and Section 3
details our MIL approach. Our experiments are presented in Section 4, and Section 5 concludes.
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2 Background and Related Work

In this section, we provide the necessary background for our work, detailing LCC and its role in
climate change mitigation, existing approaches to LCC, and a brief overview of MIL.

Land Cover Classification Machine learning for EO can be used in monitoring and forecasting of
socioeconomic, ecological, agricultural, and hydrological problems [18]. For example, in the domain
of monitoring green house gas (GHG) emissions, satellite images can be used to track emission
sources and carbon sequestration [22]. It is estimated that human land use contributes about a quarter
of global GHG emissions, and that a reduction of around a third of emissions could come from
better land management [22]. As such, better understanding about how land is used can contribute
towards zero emission targets. Improved policy design, planning, and enforcement can be achieved
through real-time monitoring [14]. For example, automated LCC can be used to determine the effect
of regulation or incentives to drive better land use practices [22]. LCC can also be used to detect the
amount of acreage in use for farmland in order to assess food security and GHG emissions [26].

Existing LCC Approaches LCC is typically approached as an image segmentation problem. The
objective is to perform pixel-wise classification of an input image, such that each pixel is assigned
a label from a set of classes, in effect creating a new image where different regions in the original
image have been separated and classified. This requires the original images to be segmented prior
to training, i.e., all pixels must be annotated with a ground-truth class. Popular approaches include
Fully Convolutional Networks [19], U-Net [23], and Pyramid Networks [17]. Existing works have
applied these or similar approaches to LCC [15, 16, 21, 24, 25, 28]. We refer readers to [11] for a
more in-depth review of existing work.

Multiple Instance Learning In MIL, data are grouped into bags of instances [5]. In comparison
to conventional supervised learning, where each instance has a label, in MIL, only bag-level labels
are provided. This reduces the burden of labelling, as only the bags need to be labelled, not every
instance. MIL has seen some existing use with EO observation data, for example fusing panchromatic
and multi-spectral images [18], settlement extraction [27], landslide mapping [31], and crop yield
prediction [30]. However, to the best of the authors’ knowledge, no prior work has studied the use of
MIL for generic multi-class LCC. We discuss our approach to this problem in the next section.

3 Methodology
In this section, we propose our MIL approach to LCC. We first explain the process and benefits of
reframing LCC as a MIL regression problem, and then detail the particular approach that we use.

3.1 Multiple Instance Learning for Land Cover Classification
For EO images, we identify three distinct tiers of data: scene level at the scale of the original images,
patch level at the scale of small blocks of the original image (typically tens or hundreds of pixels),
and pixel level at the scale of individual pixels. Segmentation-based models operate at the pixel
level, and as such require pixel-level annotations. We propose a MIL-based approach that operates
at the scene and patch levels. Instead of using pixel-level annotations, our approach only requires
scene-level labels, i.e., for each input image, we only provide the proportion of each land cover class
in that image. With these scene-level labels, LCC now becomes a regression problem, with the task
of predicting the coverage proportion of each class. The primary motivation for such an approach is
that it enables fast acquisition of training labels, as cost- and time-intensive pixel annotations are not
required. It also reduces the likelihood of label errors, which often occur in EO datasets [21].

This reframed LCC problem does not necessitate a MIL approach — it can be treated as a purely
supervised regression problem. However, as satellite images are often very high resolution, the
images would have to be downsampled, and, as such, important data would be lost. With MIL, it is
possible to operate at higher resolutions than a supervised learning approach. As depicted in Figure 1,
our proposed MIL approach involves extracting patches from the original image using a grid, and then
applying a MIL model to process and aggregate patch information. The MIL approach is operating
on patch-level data while using scene-level labels, i.e., the images are converted into bags of patches,
where each patch is an instance in MIL terms.

3.2 Scene-to-Patch Models for Land Cover Classification
Our proposed MIL approach utilises an Instance Space Neural Network (known as mi-Net in [29]).
We call these models Scene-to-Patch (S2P) classifiers as they learn from scene-level labels, but
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Figure 1: An overview of our MIL Scene-to-Patch approach for LCC. As the model produces both
instance (patch) and bag (scene) predictions, scene-level labels are transformed to patch-level outputs.

are able to generate both scene- and patch-level predictions, i.e., they upscale from low-resolution
training labels to higher-resolution outputs. For a bag of patches extracted from a satellite image, an
S2P model makes a prediction for each patch, and then takes the mean of these patch-level predictions
to make an overall scene-level prediction. These S2P models can be relatively small (in comparison
to baseline architectures such as ResNet18 and UNet; see Appendix C), which means they are less
expensive to train and run. This reduces the GHG emission effect of model development and use,
which is an increasingly important consideration for the use of machine learning [14]. Other MIL
models (e.g., with attention [13]) could be used, but these would require post-hoc interpretability [7].

4 Experiments
In this section we give detail our experiments. First we introduce the dataset and model configurations
used in this work (Section 4.1), then provide our results and a discussion (Section 4.2).

4.1 Dataset and Models
Several datasets exist for using machine learning with EO [11, p. 30]. In this work we use the
DeepGlobe-LCC dataset [6] — an image segmentation LULC dataset with data sourced from the
WorldView3 satellite (for more details, see Appendix B). When transforming these EO images to
MIL bags, there are two parameters to be determined: the size of the grid applied over the image (grid
size), and the size that each cell of the grid is resized to (patch size). We experimented with three
grid sizes (8, 16, and 24), and three patch sizes (small=28, medium=56, and large=102), resulting
in nine different S2P configurations. Each patch size uses a slightly different model architecture.
We compared our MIL S2P models to a fine-tuned ResNet18 model [10], and two UNet variations
operating on different image sizes (224 x 224 and 448 x 448). These baseline models are trained in
the same manner as the S2P models, i.e., using scene-level regression. Although the ResNet model
does not produce patch- or pixel-level predictions, we use it as a scene-level baseline as many existing
LCC approaches utilise ResNet architectures [11, 12]. For the UNet models, we follow the same
procedure as [28] and use class activation maps to recover segmentation outputs. This makes the
UNet approach a stronger baseline than ResNet as it can be used for both scene- and pixel-level
prediction. For more details on the models and training process, see Appendix C.

4.2 Results
We evaluate performance on scene-, patch-, and pixel-level prediction. For scene-level predictions,
we report the root mean square error (RMSE) and mean average error (MAE), where lower values
are better. For patch-level predictions, we report the patch-level mean Intersection over Union
(mIoU; [8, 20]), where larger values are better. For pixel-level prediction, we compute pixel-level
mIoU using the original ground truth segmentation masks (see Figure 2). The pixel segmentation
metric is preferred over the patch metric as it is independent of grid size and compares to the
highest resolution ground truth segmentation. Strong models should perform well at both scene- and
pixel-level prediction, i.e., low scene RMSE and high pixel mIoU. Our results are given in Table 1.
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Table 1: Results for our nine MIL Scene-To-Patch (S2P) models and ResNet18 baseline. All results
are given on the test dataset, and five repeats were conducted using 5-fold cross validation.

Configuration Scene RMSE Scene MAE Patch mIoU Pixel mIoU

ResNet18 0.218 ± 0.008 0.128 ± 0.004 N/A N/A
UNet 224 0.136 ± 0.008 0.075 ± 0.004 N/A 0.245 ± 0.008
UNet 448 0.114 ± 0.006 0.064 ± 0.002 N/A 0.290 ± 0.010

S2P Small 8 0.107 ± 0.003 0.058 ± 0.002 0.366 ± 0.015 0.337 ± 0.014
S2P Medium 8 0.098 ± 0.004 0.054 ± 0.002 0.414 ± 0.014 0.375 ± 0.013
S2P Large 8 0.090 ± 0.005 0.047 ± 0.002 0.439 ± 0.014 0.397 ± 0.014

S2P Small 16 0.112 ± 0.007 0.059 ± 0.004 0.317 ± 0.007 0.305 ± 0.007
S2P Medium 16 0.093 ± 0.005 0.051 ± 0.003 0.407 ± 0.013 0.388 ± 0.012
S2P Large 16 0.097 ± 0.003 0.051 ± 0.001 0.404 ± 0.016 0.384 ± 0.014

S2P Small 24 0.099 ± 0.004 0.052 ± 0.002 0.371 ± 0.012 0.360 ± 0.011
S2P Medium 24 0.098 ± 0.004 0.053 ± 0.002 0.379 ± 0.015 0.367 ± 0.015
S2P Large 24 0.106 ± 0.009 0.056 ± 0.005 0.353 ± 0.006 0.343 ± 0.006

From these results, we observe that the S2P Large model with a grid size of 8 is the most effective
across all metrics. The ResNet18 model performs significantly worse than all of the S2P models on
scene-level prediction. The S2P models all decrease in performance from patch to pixel mIoU, which
is to be expected as they are unable to produce the fine details required in pixel-level segmentation.
Despite this, they still outperform the UNet models. For the most part, smaller grid sizes lead to
better performance. However, larger grid sizes give higher-resolution image segmentation outputs, so
there is a trade-off. We suspect that smaller grid sizes are more effective as they are an inherent form
of regularisation — larger grid sizes mean larger bags, which allow the model to more easily overfit.
There is also the consideration that grid sizes that are too large may not capture sufficient information
in each cell to facilitate accurate classification. We give an example of the outputs in Figure 2.

Figure 2: Example output of our S2P model (Medium 24). Top: Original image, ground truth masks,
and overall predicted mask. Bottom: A per-class breakdown of the model predictions. Note how
the model is able to both support (+ve) and refute (-ve) different classes for different regions of the
image. There are also trees in the original image that have not been labelled as Forest land, but the
model has been able to identify them. We provide further examples in Appendix D.

5 Conclusions and Future Work
In this work, we proposed a new approach to LCC. Our method involves using MIL models as Scene-
to-Patch classifiers that transform low-resolution training labels into high-resolution predictions. This
overcomes the need for segmentation labels and will help accelerate the development of further EO
datasets by reducing the need for costly and time-consuming labelling of EO data. Our approach can
be improved in several ways: further optimising model architectures, using multiple grid sizes in a
single model, and utilising spatial relationships to improve predictive performance. Ultimately, our
work is a baseline exploratory approach. By enabling faster and easier curation of larger and more
diverse datasets, it is hoped this foundational work will lead to further developments in the use of
LCC for climate change mitigation in technology, government, and academia.
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A Implementation and Resource Details
This work was implemented in Python 3.10 and the machine learning functionality used PyTorch.
All the libraries used are detailed in the Github repository for this work, which can be found at
https://github.com/JAEarly/MIL-Land-Cover-Classification. The majority of model
training was carried out on a remote GPU service using a Volta V100 Enterprise Compute GPU
with 16GB of VRAM, which utilised CUDA v11.0 to enable GPU support. Training each model
took a maximum of three and a half hours. Trained models can be found alongside the code in the
Github repository. Fixed seeds were used to ensure consistency of dataset splits between training
and testing; these are included in the scripts that are used to run the experiments. We used Weights
and Biases [4] to track our experiments, along with Optuna for hyperparameter optimisation [2].
During hyperparamater optimisation, we ran 40 trials with pruning using the Tree-structured Parzen
Estimator sampler [3].

B Dataset
The DeepGlobe-LCC dataset is openly available and can be acquired from Kaggle. Below we give
further details on the dataset, which are adapted from the Kaggle page.2

Data
The DeepGlobe-LCC dataset consists of 803 satellite images with 3 channels: red, green, and blue
(RGB). Each image is 2448 x 2448 pixels with 50cm pixel resolution. All images were sourced from
the WorldView3 satellite covering regions in Thailand, Indonesia, and India. The original challenge
also had validation and test datasets with 171 and 172 images respectively, but as these datasets did
not include masks, they were not used in this work.

Labels
Each satellite image is paired with a mask image for land cover annotation. Each mask is an image
with 7 classes of labels, using colour-coding (RGB) as follows:

• Urban land (0, 255, 255) — Man-made, built up areas with human artefacts (ignoring roads
which are hard to label).

• Agriculture land (255, 255, 0) — Farms, any planned (i.e., regular) plantation, cropland,
orchards, vineyards, nurseries, and ornamental horticultural areas.

• Rangeland (255, 0, 255) — Any non-forest, non-farm, green land, grass.

• Forest land (0, 255, 0) — Any land with x% tree crown density plus clearcuts.

• Water (0, 0, 255) — Rivers, oceans, lakes, wetland, ponds.

• Barren land (255, 255, 255) — Mountain, land, rock, dessert, beach, no vegetation.

• Unknown (0, 0, 0) — Clouds and others.

Terms and Conditions
The DeepGlobe Land Cover Classification Challenge and dataset are governed by DeepGlobe Rules,
The DigitalGlobe’s Internal Use License Agreement, and Annotation License Agreement.

Further Details
While the DeepGlobe-LCC dataset provides pixel-level annotations, these segmentation labels are
only used to generate the regression targets for our training and for the evaluation of derived patch
segmentation, i.e., they are not used during training. However, we would like to stress that these
segmentation labels are not strictly required for our approach, i.e., the scene-level regression targets
can be created without having to perform segmentation.

We used 5-fold cross validation rather than the standard 10-fold due to the limited size of the datasets
(only 803 images). With this configuration, each fold had an 80/10/10 split for train/validation/test.
We normalised the images by the dataset mean (0.4082, 0.3791, 0.2816) and standard deviation
(0.06722, 0.04668, 0.04768). No other data augmentation was used.

2https://www.kaggle.com/datasets/balraj98/deepglobe-land-cover-classification-dataset
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C Models and Training
In this section we give a formal definition of the MIL S2P models (C.1), then detail the model
configurations (C.2), architectures (C.3), and training procedures (C.4).

C.1 Formal Model Definition

For a collection of n satellite images X = {X1, . . . , Xn}, each image Xi ∈ X has corresponding
label Yi ∈ Y , where Yi = {Y 1

i , . . . , Y
C
i }. C is the number of land cover classes, Y c

i is the coverage
proportion for class c in image Xi, and

∑C
c=1 Y

c
i = 1. For an input image Xi = {x1

i , . . . , x
k
i },

where xj
i ∈ Xi is a patch extracted from the original image, our proposed Scene-to-Patch models

make a prediction ŷji for each patch, and then take the mean of these patch-level predictions to make
an overall scene-level prediction Ŷi =

1
k

∑k
j=1 ŷ

j
i . Note these models are trained entirely end-to-end

and only use scene-level labels — no patch-level labels are used during training.

C.2 Model Configurations

We use twelve different model configurations in this work: one ResNet18 fully supervised approach,
two UNet models, and nine different configurations of our Scene-to-Patch (S2P) approach. A
summary of these configurations is given in Table A1, and further details are given below.

Table A1: The ten different configurations used in this work. The grid size determines the number
of cells and the size of each cell. Each cell is then resized (patch size), leading to a reduction in the
overall image size (effective resolution and scale). # Params is the number of parameters in each
model; see C.3 for more details regarding the # Params in our S2P models.

Configuration Grid Size Cell Size Patch Size Eff. Resolution Scale # Params

ResNet18 1 x 1 2448 x 2448 px 224 x 224 px 224 x 224 px 0.8% 11.2M
UNet 224 1 x 1 2448 x 2448 px 224 x 224 px 224 x 224 px 0.8% 4.3M
UNet 448 1 x 1 2448 x 2448 px 448 x 448 px 448 x 448 px 3.3% 7.8M

S2P Small 8 8 x 8 306 x 306 px 28 x 28 px 224 x 224 px 0.8% 707K
S2P Medium 8 8 x 8 306 x 306 px 56 x 56 px 448 x 448 px 3.3% 3.6M
S2P Large 8 8 x 8 306 x 306 px 102 x 102 px 816 x 816 px 11.1% 3.0M

S2P Small 16 16 x 16 153 x 153 px 28 x 28 px 448 x 448 px 3.3% 707K
S2P Medium 16 16 x 16 153 x 153 px 56 x 56 px 896 x 896 px 13.4% 3.6M
S2P Large 16 16 x 16 153 x 153 px 102 x 102 px 1632 x 1632 px 44.4% 3.0M

S2P Small 24 24 x 24 102 x 102 px 28 x 28 px 672 x 672 px 7.5% 707K
S2P Medium 24 24 x 24 102 x 102 px 56 x 56 px 1344 x 1344 px 30.1% 3.6M
S2P Large 24 24 x 24 102 x 102 px 102 x 102 px 2448 x 2448 px 100.0% 3.0M

ResNet18 For the ResNet18 model, we treat our LCC regression problem in a fully supervised
manner, i.e., without using a MIL approach. Instead, the entire satellite image is resized to 224
x 224 px (the size that ResNet18 expects), and the model makes (only) a scene-level prediction.
Conceptually, this is equivalent to using a grid size of one and a patch size of 224 x 224 px (see Table
A1). We used a pre-trained ResNet18 model, with weights sourced from TorchVision.3 We replaced
the final classifier layer of the network with a new linear layer of seven outputs, and then re-trained
the entire network, i.e., no weights were frozen during re-training.

UNet Models We used two different UNet configurations — one using entire image inputs resized
to 224 x 224 px, and the other 448 x 448 px. The model makes scene-level predictions using global
average pooling over F (the output of the UNet’s final convolutional layer) followed by a single
classification layer L. Using class activation maps, it is possible to recover pixel-level segmentation
outputs: Mc = WcF + Bc, where Mc is the class activation map for class c, Wc are the weights
in L for class c, and Bc is the bias for class c in L. Note, for the UNet upsampling process, we
experimented with fixed bilinear or learnt convolutions upsampling; the latter increases the number
of model parameters. This was included as a hyperparameter during tuning, and it was found that
fixed upsampling was best for the UNet 224 architecture, but learnt upsampling was best for UNet
448 architecture, leading to an increase in the number of parameters for the UNet 448 model.

3https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet18.
html#torchvision.models.resnet18
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S2P Models We tested nine different configurations of our S2P models. Two parameters were
changed: the grid size (8, 16, or 24), and the patch size (small=28, medium=56, or large=102).
The grid size determines the number of extracted patches. The patch size determines the model
architecture that was used, i.e., we designed three different architectures, one for each patch size.
This means models with different grid sizes but the same patch size used the same architecture, e.g.,
the S2P Large 8, S2P Large 16, and S2P Large 24 models all used the same model architecture (hence
having the same number of model parameters in Table A1).

C.3 S2P Model Architectures
The S2P models all used a consistent architecture: a feature extractor (convolutional and pooling
layers), followed by a patch classifier (fully connected layers), and finally a MIL mean aggregator.
The output of the classifier is a 7-dimensional vector, which represents the prediction for each class.
Each patch is passed independently through the feature extractor + patch classifier to produce a
prediction for each class, and then MIL mean aggregation is used to produce a scene-level prediction.
The different architectures are given in Tables A2 - A4. Note that, despite using larger patches, the
S2P large architecture has fewer parameters than the S2P Medium architecture (see Table A1) as it
has an additional convolutional and pooling layer, leading to a smaller embedding size (5600 rather
than 6912).

Table A2: S2P Small Architecture; patch size 28. For the Conv2d and MaxPool2d layers, the numbers
in the brackets are the kernel size, stride, and padding. b is the bag size (number of patches).

Layer Type Input Output

1 Conv2d(4, 1, 0) + ReLu b x 3 x 28 x 28 b x 36 x 25 x 25
2 MaxPool2d(2, 2, 0) b x 36 x 25 x 25 b x 36 x 12 x 12
3 Conv2d(3, 1, 0) + ReLu b x 36 x 12 x 12 b x 48 x 10 x 10
4 MaxPool2d(2, 2, 0) b x 48 x 10 x 10 b x 48 x 5 x 5
- Flatten b x 48 x 5 x 5 b x 1200
5 FC + ReLU + Dropout b x 1200 b x 512
6 FC + ReLU + Dropout b x 512 b x 128
7 FC + ReLU + Dropout b x 128 b x 64
8 FC + ReLU + Dropout b x 64 b x 7
- MIL Mean Aggregation b x 7 7

Table A3: S2P Small Architecture; patch size 56. For the Conv2d and MaxPool2d layers, the numbers
in the brackets are the kernel size, stride, and padding. b is the bag size (number of patches).

Layer Type Input Output

1 Conv2d(4, 1, 0) + ReLu b x 3 x 56 x 56 b x 36 x 53 x 53
2 MaxPool2d(2, 2, 0) b x 36 x 53 x 53 b x 36 x 26 x 26
3 Conv2d(3, 1, 0) + ReLu b x 36 x 26 x 26 b x 48 x 24 x 24
4 MaxPool2d(2, 2, 0) b x 48 x 24 x 24 b x 48 x 12 x 12
- Flatten b x 48 x 12 x 12 b x 6912
5 FC + ReLU + Dropout b x 6912 b x 512
6 FC + ReLU + Dropout b x 512 b x 128
7 FC + ReLU + Dropout b x 128 b x 64
8 FC + ReLU + Dropout b x 64 b x 7
- MIL Mean Aggregation b x 7 7
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Table A4: S2P Small Architecture; patch size 102. For the Conv2d and MaxPool2d layers, the
numbers in the brackets are the kernel size, stride, and padding. b is the bag size (number of patches).

Layer Type Input Output

1 Conv2d(4, 1, 0) + ReLu b x 3 x 102 x 102 b x 36 x 99 x 99
2 MaxPool2d(2, 2, 0) b x 36 x 99 x 99 b x 36 x 49 x 49
3 Conv2d(3, 1, 0) + ReLu b x 36 x 49 x 49 b x 48 x 47 x 47
4 MaxPool2d(2, 2, 0) b x 48 x 47 x 47 b x 48 x 23 x 23
5 Conv2d(3, 1, 0) + ReLu b x 48 x 23 x 23 b x 56 x 21 x 21
6 MaxPool2d(2, 2, 0) b x 56 x 21 x 21 b x 56 x 10 x 10
- Flatten b x 56 x 10 x 10 b x 5600
7 FC + ReLU + Dropout b x 5600 b x 512
8 FC + ReLU + Dropout b x 512 b x 128
9 FC + ReLU + Dropout b x 128 b x 64
10 FC + ReLU + Dropout b x 64 b x 7
- MIL Mean Aggregation b x 7 7

C.4 Training Procedure

All of our models were trained to minimise scene-level root mean square error (RMSE) using the
Adam optimiser. The hyperparamater details for learning rate, weight decay, and dropout are given in
Table A5. We utilised early stopping based on validation performance — if the validation RMSE had
not decreased for 5 epochs then we terminated the training procedure and reset the model to the point
at which it caused the last decrease in validation loss. Otherwise, training terminated after 30 epochs.

Table A5: Model training hyperparameters.

Configuration Learning Rate Weight Decay Dropout

ResNet18 0.05 0.1 N/A
UNet 224 5× 10−4 1× 10−5 0.25
UNet 448 5× 10−4 1× 10−6 0.2

S2P Small 8 1× 10−4 1× 10−6 0.05
S2P Medium 8 1× 10−4 1× 10−5 0.35
S2P Large 8 1× 10−4 1× 10−5 0.25

S2P Small 16 5× 10−4 1× 10−6 0.1
S2P Medium 16 1× 10−4 1× 10−6 0.05
S2P Large 16 1× 10−4 1× 10−5 0.35

S2P Small 24 1× 10−4 1× 10−5 0.05
S2P Medium 24 1× 10−4 1× 10−6 0.2
S2P Large 24 5× 10−4 1× 10−5 0.3
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D Additional Interpretability Outputs

Below we provide further outputs of our S2P models. In Figure A1, we compare the predictions for
the different S2P and UNet models. In Figures A2 - A6 we examine edge cases involving potential
mislabelling and confusion in model prediction.

Figure A1: A comparison of patch predictions at different grid sizes. With a grid size of 8, the cells
are too large to be able to resolve the fine detail of the agricultural land (yellow) — only the large
areas of agricultural land and can be separated from the urban land (blue). Grid sizes of 16 and 24
provide smaller cells, allowing the model to correctly identify more of the agricultural regions. The
UNet models are able to resolve the agricultural regions in the true pixel mask, but also pick up on
lots of other agricultural regions not labelled in the ground truth. They also make misclassify other
areas in the image, identifying water and forest regions. Note this is using unweighted model outputs.
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Figure A2: An output from an S2P Large 8 model. Cloud covers the bottom left of the original image,
so that area has been marked as unknown (black). However, the model labels it water, i.e., it has been
unable to correctly learn the unknown class as it occurs very infrequently in this dataset.

Figure A3: An output from an S2P Medium 16 model. This gives an example of potential mislabelling
in the ground truth, where the trees in the lower right have not been labelled, but the ones in the upper
right have. However, this could be intentional as the two regions have different tree densities. The
model predicts both regions as forest, but will be penalised for doing so. Also note that the urban
areas disappear in the true patch mask as they are not the majority class in their respective patches.
However, the model still predicts those regions as urban, matching the pixel mask but not the patch
mask.
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Figure A4: An output from an S2P Medium 24 model. Due to the large grid size, the model is able
to segment the bridge crossing the water and label it as urban (blue). However, the ground truth
labelling omits this, meaning segmenting the bridge in this way is incorrect (according to the original
segmentation labels).

Figure A5: An output from a UNet 224 model. The model is able to separate features such as
individual buildings in the urban area, and small clusters of trees (that weren’t labelled in the true
pixel mask). However, it misclassifies the rangeland regions in the bottom left of the image. As the
model often has relatively low weighted predictions for some areas, we also provide the unweighted
prediction mask.
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Figure A6: An output from a UNet 448 model. The model has been able to segment the area of water
with high fidelity, but produces different segmented regions to the true pixel mask for the land. Note
on the bottom row, the model also predicts the lower right region as barren and forest, but not as
strongly as it (correctly) predicts it as water. This highlights potential model confusion, with smooth
blue/green/grey areas leading to misclassification. However, for agricultural land, the model correctly
labels the lower right as negative (red), i.e., refuting the prediction of agricultural land for the area of
water.
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