NeurIPS | 2022 UC L A
Thirty-sixth Conference on Neural Information

Processing Systems

ClimateLearn: Machine Learning for
Predicting Weather and Climate

Hritik Bansal* Shashank Goel* Tung Nguyen* Aditya Grover




Rapid increase in the extreme weather events globally

Thousands of Migrant Workers Died in Qatar'’s
Extreme Heat. The World Cup Forced a

Reckoning
ESENEW/S
Droughts Take Widening Toll Report on California Climate
On World’s Largest Economies Impacts ‘Paints a Pretty Grim
Picture’

Devastating floods in Pakistan

UNICEF is on the ground working with partners to help children and families.




Climate Modeling

K/

% Climate modeling 1s fundamental in understanding atmospheric, oceanic, and surface processes.
% Climate models can be used for short-term weather forecasts or long-term climate projections.
> Short-term forecasts: Predicting weather 3 days ahead from the current weather conditions.

> Long-term forecasts: Understanding average condition changes in a region over years or decades.
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Traditional Climate Modeling Through Physics-based models

K/

% System of differential equations based on the laws of physics, fluid motion, and chemistry.
> Numerical Weather Prediction (NWP),
> (Global Climate Models (GCMs)

PROS st Longitide
% Slow and computationally
% Reasonably accurate il LA B expensive

% White box P

+**  Difficult to improve given
more data

Image credits: https://celebrating200years.noaa.gov/breakthroughs/climate_model/



Data-driven Approach for Spatiotemporal Modeling of Climate

K/

< We aim to address two fundamental tasks:
> Temporal Forecasting

> Spatial Downscaling



Machine Learning for Weather Forecasting

O

% Train a neural network from historical weather data to predict future scenarios.

O

% Similar to image-to-image translation.

[lustration of Machine Learning
for Weather Forecasting

Image credits: Rasp, Stephan, et al. "WeatherBench: a benchmark data set for data driven weather forecasting."
Journal of Advances in Modeling Earth Systems 12.11 (2020): €2020MS002203.



Machine Learning for Spatial Downscaling

7

% Train a neural network model from historical weather data to predict high resolution

values of a variable from the low resolution variable grid.
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% This task is similar to super-resolution for images.
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Introduction to ClimateLearn Package

Datasets Models

Metrics Visualization

Tasks




Overview

Datasets Models
ERA5S Convolutional Neural Network,
WeatherBench Vision Transformers
Metrics Visualization
Latitude-Weighted RMSE Snapshot-based
Bias Period of time
Tasks

Temporal Forecasting
Spatial Downscaling




ERAS5 Dataset

The ERAS dataset that provides an hourly estimate of a large number of atmospheric, land and

oceanic climate variables from 1959 to present.

It contains historical observations that are combined with global estimates using advanced

modelling and data assimilation systems.

Long name Short name | Description Unit Levels

geopotential z Proportional to the height of a pressure level | [m®s™ 7] 13 levels
temperature t Temperature [K] 13 levels
specific_humidity q Mixing ratio of water vapor kg kg™ '] 13 levels
relative_humidity r Humidity relative to saturation [9] 13 levels
u_component_of_wind u Wind in x/longitude-direction [ms™!] 13 levels

v_component_of_wind

\U

Wind in y/latitude direction

[ms™1)

13 levels

Example of climate variables in ERAS dataset
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Downloading ERAS

The ERAS dataset 1s made available via two sources:

K/

% Copernicus

> Official EU’s Earth observation programme

> C(Climate Data Store (CDS) that hosts ERAS data
> Freely accessible - Need API key

% Weatherbench
> Pre-downloaded/processed data from Copernicus

> Selected variables

Q)pemicus

Europe’s eyes on Earth

WeatherBench
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Snippet

«* The data is stored in the NetCDF files with .nc¢ extension. One of the distinct features of

this format is the named specification to the coordinates and the data variables.

‘, from climate_learn.utils.data import load dataset, view

dataset = load_dataset("data/weatherbench/era5/5.625/2m temperature")
view(dataset)

xarray.DataArray 't2m' (time: 350640, lat: 32, lon: 64)

=
Array Chunk
Bytes 2.68 GiB 68.62 MiB
Shape (350640, 32, 64) (8784, 32, 64) % 32
Count 120 Tasks 40 Chunks
Type float32 numpy.ndarray 64

v Coordinates:

lon (lon) float64 =

lat (lat) float64 -87 —}

time (time) datetime64[ns] 1979-01-01 ... 2018-12-31T23:00:00 =]
v Attributes:

units : K

long_name : 2 metre temperature


https://en.wikipedia.org/wiki/NetCDF

Dataloading

K/
L X4

K/
L X4

Package is built over PyTorch framework.

Example dataloader for weather forecasting

° from climate_ learn.utils.datetime import Year, Days, Hours
from climate learn.data import DataModule

data_module = DataModule(
dataset = "ERAS5",

task = "forecasting",

root_dir = "data/weatherbench/era5/5.625/",
in_vars = ["2m_temperature"],

out_vars = ["2m_temperature"],

train_start_year = Year(1979),
val_start_year = Year(2015),
test_start_year = Year(2017),
end_year = Year(2018),
pred_range = Days(3),
subsample = Hours(6),
batch_size = 128,

num workers = 1

13



Models

% Convolutional Neural Network (CNN)

Fully-

connected
Convolution layer
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Vision Transformer (ViT)

MLP
Head
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Convolutional Neural Network (CNN)

K/

% Deep Learning model for processing gridded data.

> Like RGB/Grayscale images

DS

» Designed to learn spatial features from lower to

higher resolution.
> Many layers of transformations, including

convolutions, to extract information.
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CNN variants

ResNet

input
image
tile

U-Net

output
1 _1".]".| segmentation
a2l 4 4 & map

—_—— g Iolfl =»conv 3x3, ReLU
tE -

P =+ copy and crop
— 3 - # max pool 2x2
i F B 4 up-conv 2x2

=» conv 1x1
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Vision Transformer (ViT)

K/

% Transformer
> Deep learning model that is suitable for processing sequential data like natural language.

> The model uses stack of multi-headed attention layers.
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V1T for Forecasting

K/

% Simply attach an MLP prediction head on top of the transformer encoder
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Metrics

Metric

Description

Formulation

RMSE

Root Mean Square Loss

Z Z(prediction — truth)?

N, lat N, lon

Latitude-weighted
RMSE

Pixels near the equator are given more
weight because the earth is curved leading
to less area towards the pole.

Z Z wiqt(prediction — truth)?

Nlat Nlon

Bias

Absolute difference between spatial mean
of predictions and observations.

NlatNlon %

Z |prediction — truth|
lem




Visualizing a Snapshot

visualize(model_module, data_module, samples = ["2017-06-01:12", "2017-08-01:18"])

Initial condition [Kelvin] Ground truth [Kelvin] Prediction [Kelvin] Bias [Kelvin]
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Visualizing the model outputs for two sample timestamps (rows)
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Visualizing over a period of time

Mean bias [Kelvin]
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Calculated over all days in 2017 - 2018
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More Advancements in the ClimateLearn Package

Datasets

ERAS
WeatherBench
CMIP6
ClimateBench

Models

Convolutional Neural Network
Vision Transformers
Diffusion Models

Metrics

Lat-Weighted RMSE
Bias
Anomaly Correlation Coefficient
Pearson’s Correlation

Tasks

Temporal Forecasting
Spatial Downscaling
Uncertainty Prediction
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Resources

s Colab:
https://colab.research.google.com/drive/IGMT_CnxI.104ZalUc3Gf7u_tm_MSECoZo?usp=sharing

% Github:
https://github.com/tung-nd/climate_learn
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https://colab.research.google.com/drive/1GMT_CnxL1o4Za1Uc3Gf7u_tm_M5ECoZo?usp=sharing
https://github.com/tung-nd/climate_learn
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