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Federated machine learning (FL)

Source: NVIDIA AI blog Source: Venkataramanan, V. et al. 
IEEE Internet of Things Journal (2022).

https://blogs.nvidia.com/blog/2019/10/13/what-is-federated-learning/


Challenges & limitations of FL

• Relatively poor test  set performance of FL in terms of prediction 
accuracy compared to traditional centralized ML methods
• Applications where data is not independently and identically 

distributed (IID) across different FL clients
• Long training times for aggregated global model to converge due to 

diverse weights & parameters across clients
• Privacy vs Accuracy tradeoff
• Communication costs and sample efficiency



Variants & extensions of FL
• Clustered & hierarchical FL: Divide similar local clients into clusters

§ Learn both a joint global model (via local updates) 
§ As well as cluster-level models by aggregating private data within each cluster
§ Gradient averaging, model averaging approaches

• Dynamic regularization: Update local loss functions dynamically so device-
level optima coincide with globally optimal model parameters
• Model personalization & fine-tuning 

§ Personalize global meta-model 
locally for each device

§ Debiase local updates via 
gradient correction methods 

§ Transfer learning
§ Heterogeneous FL training frameworks Source: Ghosh, A. et al. NeurIPS 2020.



FL applications for power grids

• FL has been applied for mainly load forecasting
• Recent works have examined Clustered FL for

predicting energy consumption
• Other, more recent advanced FL tools have not 

yet been applied to the grid-specific context
• Distributed Energy Resource (DER) forecasting 

- solar PV, EV, batteries, flexible loads etc.
§ Large no. of heterogeneous, independently owned 

devices with private, sensitive customer data

• Incorporate more domain-specific knowledge (e.g., DER/load 
models, grid physics/constraints) à Physics-informed FL?

Source: Venkataramanan, V. et al. 
IEEE Internet of Things Journal (2022).
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• Apply advanced FL methods for DER 
forecasting at both individual device & 
aggregate levels

• Rigorously evaluate performance 
(accuracy, training time, efficiency) on 
synthetic & real data from US/Portugal

• Quantify uncertainty and DER forecast 
errors associated with FL predictions

• Understand impacts of improved FL
forecasts (and uncertainty) on power
systems operations (transmission & 
distribution)



Climate change impacts

• Enable more rapid integration of DERs & renewables
à Help decarbonize power & transportation sectors

• Better grid operational planning & real-time operations
à Maintain system stability, reliability & resilience

• Aid in market clearing and increased efficiency 
à More affordable energy access & climate justice goals

• Grid operators & utilities can plan ahead to deal with intermittency 
& variability with high renewables % and/or extreme weather
à Reduce reliance on coal & natural gas peaker plants
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