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Abstract

Precise flood risk assessment is needed to reduce human societies vulnerability
as climate change increases hazard risk and exposure related to floods. Levees
are built to protect people and goods from flood, which alters river hydrology, but
are still not accounted for by global hydrological model. Detecting and integrating
levee structures to global hydrological simulations is thus expected to enable more
precise flood simulation and risk assessment, with important consequences for
flood risk mitigation. In this work, we propose a new formulation to the problem
of identifying levee structures: instead of detecting levees themselves, we focus on
segmenting the region of the floodplain they protect. This formulation allows to
better identify protected areas, to leverage the structure of hydrological data, and
to simplify the integration of levee information to global hydrological models.

1 Introduction

(a) Floodplain and
protected areas

(b) Levees & pro-
tected areas

Figure 1: Illustration of our problem formulation
(a) We aim to accurately segment levee protected
areas (in blue) of the floodplain (in orange) (b)
Different from related work, our approach explic-
itly models protected areas (blue) instead of levee
locations (yellow)

Flood risk is defined as the product of haz-
ard (the probability and strength of a flood
event), exposure (the population and goods sub-
ject to flooding) and vulnerability (the capacity
of a society to deal with the event) [1]. Cli-
mate change is intensifying hazard risk by ris-
ing sea levels and increasing flood frequency,
while overall exposure increases with popula-
tion growth and densification of coastal and flu-
vial flood-prone regions [2]. Although flood-
ing events occur locally, their impact goes be-
yond the local tragedies of devastation. With
the globally interconnected nature of economic
activities, local disasters also disturb supply
chains at global scale [3, 4], making flood risk
assessment and mitigation a global challenge.
To protect people and goods from flood risks,
our two main assets are water management in-
frastructure (i.e.; levees and dams), and early
warning systems. In the context of water man-
agement, it has been shown that overwhelmed levees are a source of disastrous floods [2] as it comes
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with surprise. Better dimensioning of flood defense requires more accurate floods risk map account-
ing for climate change induced hazard risk (e.g. shift of the event characteristic distribution).

Hydrological simulations contribute to reduce vulnerability as they allow to predict and thus mitigate
flood events [5]. Global hydrodynamic models rely on global spaceborn Digital Elevation Model
(DEMs) to route river discharge through landscape and represent river/floodplain interactions [6, 7],
that do not include man-made river flow control infrastructure such as levees and dams. Thus, flood
predictions computed using current global hydrological models do not account for the impact of
levees on river discharge. Integrating levees to global hydrology models would allow to generate
more accurate and reliable global flood risk assessment. While the simulation of dams impact on
river discharge at global scale have been introduced by the hydrology modeling community [8, 9,
10], the representation of levee impact on river discharge has not yet passed from case studies to
global modeling [11]. The main bottleneck is the non-availability of a global dataset gathering
worldwide river control equipment.

Flood-protection levee datasets are generally confined to territorial boundaries (national datasets)
and are scarcely available and poorly documented. A very recent effort has been put to collect,
standardize and homogenize flood-protection levee data from various sources into a single open
source dataset [12]. But this effort has been limited so far to delta areas that present both fluvial
(from river) and coastal (from sea) flood risks. The most-up-to-date river levee dataset is the National
Levee Dataset (NLD) from the U.S. Army Corps of Engineers (USACE), which we use in this study.
One way to extend our knowledge of levee locations is to use Machine Learning (ML) to learn the
relationship between levee locations and a set of globally available variables from available local
levee data, so as to infer levee locations on a global scale from these variables. Unfortunately, this
problem has proved very challenging: Levees are built to have maximum impact on flood protection
at minimum construction cost (and so at minimum size), which makes it notoriously hard to detect.
While some local high precision DEMs are precise enough to identify levees from elevation data
[13, 14, 15], the precision needed to detect levee structures is far higher than that of global DEMs.
Another line of work [16, 17], closer to the present study, have taken an other path and tried to
leverage the NLD dataset to infer levee locations from data including economical and hydrological
data.

We propose a new formulation of the problem: Instead of identifying the position of levees them-
selves, we aim to identify the areas that are protected by levees. The benefit of this formulation
is threefold: First, we find that it better fits the distribution of discriminative features. Second, it
allows us to leverage additional structure to our modeling using hydrological data: We propagate
our model classification outputs following the reverse hydrological flow direction path. Finally, this
problem formulation allows for seamless integration to existing global catchment level hydrological
models: aggregating our model output per hydrological catchment provides with a single parameter
representing the catchment’s ratio of protected floodplain. This parameter can be readily integrated
into hydrological models to limit the growth of river width within the catchment. To detect levee-
protected areas, we formulate the hypothesis that protected areas should exist where human activity
and flood risk overlap. We compute potential floodplains using hydrological model simulations and
quantify human activity using different variables including GDP, population and land use. We use
this data as input and train ML models to classify levee protected areas using NLD dataset. Prelimi-
nary experiments provide us with encouraging results as we find our porposed problem definition to
improve accuracy of levee protected area segmentation. This work focuses on the Mississippi basin
area as it is the region most densely annotated with levee locations. However, our ultimate goal is
to generalize this analysis globally. Generalizing to a global scale will come with the additional
difficulty of assessing accuracy in areas with sparse ground truth and possibly non-stationary levee
distributions. These are important challenges to global hydrology and global flood risk assessment,
which we leave open fur future work, and welcome the community to join us in tackling.

2 Data

Different from previous works, we use the information of protected area provided by the NLD
dataset, instead of the levee location themselves, as our classification target. This difference is
illustrated in Figure 1. The NLD dataset does not provide an exhaustive collection of U.S. levees,
which leads to the existence of false negative ground truth labels, i.e; areas marked as non-protected,
while they are in fact protected by an unreferenced levee. One notable exception is the region
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surrounding the Mississippi river basin, which is densely annotated. In an attempt to minimize the
impact of false negative labels on our analysis, we focus on this region only, using the three states
of Mississippi, Arkansas and Louisiana as our study area. We rasterized the levee-protected area
provided by the NLD dataset to a resolution of 90m, resulting in one binary label maps over each of
the three states.

We ran hydrological simulations and estimated 100-year return period flood inundation depth at
90m resolution [18]. We binarized flood inundation depth to segment the hydrological floodplains
(i.e.; areas subject to potential inundation), as illustrated in Figure 1a (orange). We also use Global
Surface Water Occurrence datasets [19] to quantify flood risk. To quantify human activity, we use
land use data from LCCS [20] and GFSAD [21], GDP data provided by [4], and population data
from Landscan [22]. Finally, our proposed model propagates classification outputs using the inverse
flow direction as illustrated in Figure 3. The flow direction is a hydrological variable indicating the
direction in which water flows from every pixel. It is computed using the gradient of hydrological
DEMs elevation, i.e.; the slope of the land. In our experiments, we used the flow direction provided
by the MERIT Hydro [6] dataset.

3 Model and experiments

Figure 2: Illustration of the feature expressivity of levees and pro-
tected areas. We find protected areas to have more discriminative fea-
ture distributions.

To motivate our approach,
Figure 2 illustrates the ben-
efits of our proposed prob-
lem formulation. Levees
are built in locations de-
signed to most efficiently
protect a targeted area from
floods. In some cases, the
ideal location for a levee
may be closer to the pro-
tected area, while in other
cases, levees may be lo-
cated closer to the river and
further away from the tar-
geted area. From a ML perspective, this leads to different distribution of the input features rep-
resenting levee locations. In addition, levees are thin structures often built on wide plains. This
means that only a small fraction of the plain on which they are built is actually covered by the levee
structure, despite most of the surrounding pixels having almost exactly the same features. From a
ML perspective, this leads to a complex situation in which positive samples share similar input fea-
ture distribution with (an even greater number of) negative samples, which complicates the learning
task. On the other hand, target protected areas show significantly different and characteristic feature
distribution as they represent zones of more intense human activities, as illustrated in Figure 2. This
motivates us to classify pixels as levees protected areas instead of levees location.

We train a linear classifier pixel-wise to classify levee protected areas using a binary cross entropy
loss. The model is optimized using stochastic gradient descent with momentum. During inference,
we experiment with an original strategy: We post-process the classification output of our model by
propagating positive output labels (levee protected areas) along the inverse flow direction. Figure
3(b) schematically illustrates this process. The rationale behind this approach is that if a downstream
pixel is to be protected, then the area located upstream of this pixel should also be protected or else
it would eventually flood the downstream pixel.

We use a three-fold cross validation strategy in which, for each fold, we use one state as training, one
for validation, and one as our test set. We report accuracy of protected in terms of pixel-wise levee
protected area segmentation accuracy. We compare our results to that of a model classifying levee
existence similar to prior works. We derive the protected areas resulting from levee locations given
by this model by propagating positive outputs following the inverse flow direction. This allows us
to compare both approaches with a same metric: levee-protected area segmentation accuracy.

3



(a) Propagate examples (b) I.P. illustration

Figure 3: Sample model output with inverse flow propagation(I.P.). (a) Modeling levee protected
areas with inverse flow propagation better captures (Left) Protected area segmentation. (Middle)
Levee location segmentation and their propagated protected area (Rigth) Ground truth protected
area (b) Each pixels has one forward flow direction. Protected areas are propagated from the model
output (blue) following the inverse flow, starting from the red arrows.

Table 1: Mean accuracies reached by different models. The
Levee column refers to a linear model trained to classify
levee locations.

Models
I.P. Levee Linear Lgbm XgB MLP
No — 0.6294 0.6170 0.6189 0.6558
Yes 0.5138 0.6620 0.6302 0.6363 0.6616

Table 1 shows the levee-protected
area segmentation results from both
propagated (I.P.) and non-propagated
model outputs, and contrasts these re-
sults to the accuracy reached by levee
propagation (column Levee). Both
flow propagation and our proposed
problem formulation are shown to
improve accuracy. The impact of
propagating propagated areas along
the inverse flow is illustrated in Fig-
ure 3(a). Flow propagation seems to
appropriately fill some wholes of the floodplain area to be protected by propagating the positive
label from high human activity areas to lower activity regions located upstream. We additionally
experimented with more expressive non-linear models, but have found little improvement over the
linear baseline. We report their results in Table 1 for completeness.

4 Conclusion and future work

Knowledge of man made structures impacting global surface water processes is critical for flood
risk assessment in a time when climate change threatens to increase flood related damages, creating
both local catastrophes and global disruptions through interconnected logistic chains and economical
activities. In this paper, we proposed a new formulation to the problem of levee detection, which
is both more performant and amenable to integration into global hydrological models. Preliminary
experiments on a local region densely annotation with levee information have shown the merits
of our formulation. Despite encouraging results, this work is still in its early phase; we believe
that further optimization of the ML model has good chances of improving detection. In addition,
important challenges lie agead towards generalizing the application of our model on a global scale
for global flood risk assessment. We encourage the community in joining our effort to identify levee
structures globally for better flood risk assessment.
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