Estimating Heating Loads in Alaska using Remote Sensing and Machine Learning Methods

Global Warming and Heating Load Estimates

Filling an Energy Use Data Gap

- > **Geospatial-first** estimation approach
 - Leverage scale and granularity of satellite imagery
- > Contrasts with micro-level approaches

Our Task

Create a model that predicts heating loads for buildings in Alaska, accounting for local climate

o Focus on Railbelt

Google Earth Engine for Input Features

- > Local climate conditions
- > Building Features
 - Height
 - o Base Area
 - o Age

Process Flowchart

building climate features

model

Heating Loads (BTUs)

Regression Model

 Capitalize on climate differences between Anchorage and Fairbanks

> Generalize to Railbelt

Models Estimated & Fit

Regression	Mean Squared Error
Linear	6.9503×10^{-3}
Ridge	6.976×10^{-3}
Ridge (degree 2 polynomial)	2.428 x 10 ⁻⁶
Decision Tree	3.204×10^{-7}
Random Forest	1.221 x 10 ⁻⁷

Better fit

Data Sampling for Class Imbalance

- Avoid biasing model towards certain types of buildings
- > Balancing Explored
 - Locations: Anchorage and Fairbanks
 - Building Age: years

Data Sampling Results

Regression	Mean Squared Error		
	No Balancing	Balanced Location	Balanced Age
Linear	6.950 x 10 ⁻³	8.174 x 10 ⁻³	5.774 x 10 ⁻³
Ridge	6.976 x 10 ⁻³	8.200 x 10 ⁻³	5.801 x 10 ⁻³
Ridge (degree 2 polynomial)	2.428 x 10 ⁻⁶	2.660 x 10 ⁻⁶	1.214 x 10 ⁻⁶
Decision Tree	3.204 x 10 ⁻⁷	4.326 x 10 ⁻⁸	3.321x 10 ⁻⁹
Random Forest	1.221 x 10 ⁻⁷	2.026 x 10 ⁻⁸	4.338 x 10 ⁻⁹

- > Heating load estimates that capture variation in local climate
- > Incorporating public energy retrofit database into models
- > Hourly heating load estimates
- Widening scope to Alaska and beyond

Supporters

UNIVERSITY of WASHINGTON

eScience Institute

