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Motivation
● What is a drought? 

Water deficit over a prolonged period of time.

● How do we measure droughts? Drought index such as the Standardized Precipitation Index (SPI) is commonly 
used and recommended by the World Meteorological Organization (WMO).

Threatens food security Threatens water supply Linked to biodiversity loss, 
wildfires



Types of Droughts and Their Impacts



Physical Drivers of Drought 
Soil moisture is strongly constrained by the 
land energy balance and land moisture 
budget. 

Precipitation is in turn linked to the 
vertically integrated atmospheric moisture 
budget in steady state. 

Relevant variables implied:
Consideration 1 - Atmospheric Moisture 
Budget: Winds, moisture, precipitation, 
evapotranspiration, surface pressure

Consideration 2 - Land Energy Balance: 
Groundwater storage, runoff, precipitation, 
evapotranspiration

Consideration 3 - Land Moisture Budget: 
Precipitation, evaporation, groundwater 
storage, runoff



Pipeline for Drought Forecasting



Pathway to Socio-Economic Impact 

Stakeholders: 
Farmers, Supply chain 
industry, Politicians, 
Supermarkets, Water 
Resource Managers, 
Consumers

Reducing the Drought 
Impact on the 
Economy- 9 Billion 
USD per drought (US 
NOAA/NIDIS)

Reducing the Drought 
Impact on People: 
13 million estimated 
affected by a drought 
in Feb 2022 (UN/UFP)]

Adaptive Resource 
Allocation and 
Policymaking: Identify 
the  short term and long 
term risks of the 
compound droughts
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