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Motivation: Methane Leak Detection & Remediation (LDAR)
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[2] IEA, Sources of methane emissions, IEA, Paris https://www.iea.org/data-and-statistics/charts/sources-of-methane-emissions-2



Methane source attribution workflow B Microsoft
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Methane dispersion modeling
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(From John Stockie)

3D advection-diffusion equation (2 order PDE)
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S: methane leak source PDE
v(x,t): wind velocity field inputs
D: diffusion coefficient matrix

Physics-based Deep-learning-based
numerical solver proxy modeling

C(x,t): methane concentration field } ollDJE|)ollth



FNO training data generation with cloud HPC B Microsoft

Cloud HPC to generate input/output pairs of 3D methane dispersion PDE using physics-based numerical solver
» Cloud-native HPC: Dask + Kubernetes containers (on Azure)  (https://library.seg.org/doi/10.1190/segam2021-3594908.1)
= Advantages: Scalability, fault-tolerance, auto-scaling, and spot VMs

= Ease of use: Minimal code change for switching to HPC
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Fourier Neural Operator (FNO) surrogate modeling =. Microsoft

FNO architecture . . .
) —>Fourier layer 1 —Fourier layer 2 @ @ @ —»{Fourier layer T|—>|
(Li et al., ICLR 2021) -
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Challenges for our study: M

(1) Time-variant inputs
(2) 3D PDEs, 4D FFT for FNO

(3) FNO model: ~150m parameters FNO for 3D methane dispersion modeling
Channel 1: Channel 2: Channel 3: Channel 4: Channel 5: Channel 6: Methane concentration
Methane leak rate Wind direction Wind speed Temperature Pressure Stability Class
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Input (X, Y, Z, T=24, C=6): based on historical weather data Output (X, Y, Z, T=24, C=1)
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FNO training
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FNO model training using 4800 samples (4000 for training, 800 for validation)

Use Adam optimizer with learning rate decay

~150 million parameters in our FNO model for learning 3D dispersion operator

Distributed training (8 Nvidia V100 GPUs) with DeepSpeed (https://github.com/microsoft/DeepSpeed)
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FNO proxy model results for 3D methane dispersion = Microsoft

= FNO emulates the highly non-linear PDE solver (3D dispersion) very well
= FNO is capable of handing rapid changes of wind over time

= |nference time << 1 sec, where 24 time-steps (24 hours) are predicted in one inference
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Conclusions B® Microsoft

= Methane leak detection and remediation are critical for tackling climate change, where
methane dispersion simulations play an important role in emission source attribution.

= As 3D modeling of methane dispersion is often costly and time-consuming, we train a
deep-learning-based surrogate model using the Fourier Neural Operator (FNO) to learn
the PDE solver in our study.

= Qur result shows that our FNO surrogate modeling provides a fast, accurate and cost-
effective solution to methane dispersion simulations, thus reducing the cycle time of
methane leak detection.
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