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Abstract 

Methane leak detection and remediation are critical for tackling climate change, 
where methane dispersion simulations play an important role in emission source 
attribution. As 3D modeling of methane dispersion is often costly and time-
consuming, we train a deep-learning-based surrogate model using the Fourier 
Neural Operator to learn the PDE solver in our study. Our preliminary result 
shows that our surrogate modeling provides a fast, accurate and cost-effective 
solution to methane dispersion simulations, thus reducing the cycle time of 
methane leak detection. 

 

1 Introduction 

Methane (CH4) is a potent greenhouse gas (GHG) and the second largest contributor to global 

warming (next to CO₂). CH4 lasts in the atmosphere for nearly a decade, which is much less time 

than CO₂. However, it absorbs energy much more effectively than CO₂. Methane’s severe impact on 

Earth’s warming is reflected in its value of Global Warming Potential (GWP), an index for 

comparisons of the global warming impacts of different gases. Methane is estimated to have a GWP 

of 84–87 over 20 years [1]. This highlights the importance of methane remediation for tackling 

climate change. 

The global oil and gas industry is one of the primary sources of methane emissions. From its 
operations, around 70% of today’s methane emissions are technically possible to be avoided, 
according to the International Energy Agency (IEA)’s estimate [2]. This speaks of the strong 
motivation of leveraging methane detection technologies to mitigate emissions. Emerging methane-
sensing technologies developed for this purpose include satellites, aerial surveys and IoT sensors, 
among others. For example, ground sensor grids can provide real-time/near real-time measurements 
of methane concentration over an area, in order to track emission sources and leak rates [3, 4]. This 
is an inverse problem whose corresponding forward process is methane dispersion modeling, that 
is, computing the downstream pollutant concentration given source leak locations and rates, together 
with meteorological variables. 

The methane dispersion modeling or simulation belongs to the category of atmospheric dispersion 
modeling where a combination of advection (due to the wind) and diffusion (due to turbulent eddy 
motion) occurs in the air near surface. It is governed by the 3D advection-diffusion equation which 
is a 2nd order Partial Differential Equation (PDE) [5]. The forward modeling of methane dispersion 
is the most computationally expensive component of a non-linear Bayesian regression approach for 
methane source attribution, where Markov Chain Monte Carlo (MCMC) simulations based on the 
3D advection-diffusion PDE need to be performed numerous times (e.g., thousands) [4]. As the 3D 
dispersion modeling is costly and time-consuming, we will investigate a deep-learning-based proxy 
model to speed up the modeling by a few orders of magnitude. To be more specific, we will evaluate 
the Fourier Neural Operator (FNO) [6], a state-of-the-art approach for expediting our PDE-based 
modeling of methane dispersion. 

2 Methodology 



 

 

 

2 

2.1 Deep learning for PDEs 

Recently we have seen the emergence of a new way of utilizing deep learning to provide faster AI 

surrogate models for physics-based numerical simulation or optimization problems. Those scientific 

simulations usually involve solving complex PDEs, where conventional numerical solvers typically 

require fine discretization (e.g., in space and time) to achieve accurate solutions. Therefore, 

conventional PDE solvers can often be computationally expensive and time-consuming, especially 

for a large-scale problem. To address the cost and speed challenge, innovative AI-based emulators 

are brought up to learn the solution operators of parametric PDEs. One category of approaches is to 

take advantage of the physics constraints defined in PDEs, such as Physics Informed Neural 

Network (PINN), where the underlying PDE formulation is coded in the loss function to train a deep 

learning model [7]. Another category is data-driven without using physics constraints. Among this 

category, a recent novel method named Fourier Neural Operator (FNO) shows great efficiency and 

state-of-the-art performance in directly approximating PDE operators [6]. The success of the FNO 

in learning highly non-linear and complex PDE operators relies on its spectral convolution in the 

Fourier domain, as spectral methods are widely used for deriving PDE solutions. 

In this study, we will build a proxy FNO model for the methane dispersion PDE and validate its 

performance by comparing the FNO predictions to the traditional numerical solutions. We will 

experiment with some modifications of the FNO architecture and check their relative performance 

in future work. A high-speed and accurate AI-based simulator would dramatically expedite methane 

dispersion simulations, leading to a fast and cost-effective workflow of emission source attribution 

and sensor placement optimization. 

Another contribution to emphasize in our study is that our methane dispersion modeling belongs to 

a more challenging class of PDEs whose solution operator appears more complex for an AI model 

to learn. In Li et al.’s FNO examples [6], the inputs to PDEs are static or not varying over time. 

However, we have time-variant input arguments to the methane dispersion PDE, such as the wind 

direction and speed. A rapid change in the wind condition can result in a dramatic change of methane 

concentration distribution in a non-smooth fashion and a short amount of time. Non-smooth 

temporal variations in inputs and outputs pose a big challenge for deriving a surrogate model. 

2.2 Surrogate modeling using FNO 

The governing PDE for the methane dispersion simulation is a 3D advection-diffusion equation [5]: 

𝜕𝐶

𝜕𝑡
+ ∇ ∙ (𝐶𝑣⃗) = ∇ ∙ (𝐷∇𝐶) + 𝑆 

Where 𝐶(𝑥, 𝑡) is the methane concentration field at location  𝑥 and time 𝑡, a variable of interest to 

be solved. The term 𝑣⃗(𝑥, 𝑡) is the wind velocity field that methane is moving with. 𝑆 describes 

methane leak sources and 𝐷 is the diffusion coefficient matrix. 

We use the above methane dispersion PDE, together with a conventional physics-based approach, 

to generate 1000 pairs of input and output data in our preliminary experiment. The inputs consist of 

the methane leak rate, wind direction, wind speed, atmospheric stability class, temperature, and 

pressure. The output data is the 3D methane concentration field as a function of time. Each 

simulation sample is performed in a time length of one day with one hour as a time-step. Therefore, 

our input and output data for surrogate modeling is 4D, in the form of (x, y, z, t) where nt = 24. The 

most impactful inputs are methane leak rate, wind direction and wind speed, and we consider only 

those three for our proof-of-concept surrogate modeling. Hence, we use a channel number of 3 to 

provide those 3 variables in our input data. Our output data has only one variable (methane 

concentration), so the channel number of output data is 1. All 1000 samples of the leak rate, wind 

direction and wind speed are randomly populated for training data generation. The wind direction 

and speed vary hour by hour, but the methane leak rate is kept constant within a day for now. In our 

preliminary surrogate model, we only consider one methane emission source, at the center of our 

3D model with a fixed elevation. 
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Once we obtain our training samples, we feed them to the FNO algorithm to train a surrogate model 

for our dispersion PDE operator. The original FNO architecture consists of 3 main components: (1) 

a time-domain encoder with Fully Connected (FC) layers to lift the channel dimension; (2) A series 

of repeatable Fourier layers combining Fourier-domain spectral convolution and time-domain 1x1 

convolution; (3) a time-domain decoder with FC layers to project back to the target dimension. Our 

data size for 3D methane dispersion simulations over time is (nx, ny, nz, nt) = (57, 58, 40, 24), and 

4D FFT and inverse FFT over those four dimensions are performed in the FNO. We also take 

advantage of distributed training using DeepSpeed [8] to expedite our training with 8 GPUs. Once 

a surrogate model is derived, we can predict the 3D methane concentration field at all 24 time-steps 

in a single pass of inference which takes less than a second. 

2.3 Cloud HPC for training data generation 

After our preliminary experiment, we would like to generate thousands more training data with the 

conventional physics-based solution to build a generalized and robust FNO surrogate model. This 

can be computationally intensive, and we rely on the cloud-native HPC technology for distributed 

3D simulations. We use a combination of Dask and Kubernetes [9] for running methane dispersion 

modeling in a containerized fashion on cloud, which provides great features such as scalability, 

fault-tolerance, and auto-scaling. It can also take advantage of the spot virtual machines to 

significantly reduce the computational cost (up to 90%). 

3 Preliminary results 

We split our 1000 training samples into training (800 samples) and test (200 samples) datasets. We 

train a FNO proxy model with the 800 training samples using an Adam optimizer and a relative 

MSE loss function [6]. After a few hundred epochs, both training and testing losses are reduced to 

a few percent (relative to the ground truth). We run inference on test samples (unseen by training) 

and plot one sample result in the figure below. Displayed are 3D methane dispersion plumes from 

our FNO inference and the conventional physics-based solution at various time steps. Although the 

time-variant wind causes rapid changes in the plume orientation and shape, our FNO surrogate 

model is capable of learning the complex non-linear PDE operator very accurately, producing high-

fidelity simulation results at all time steps in one pass of inference. 

 

4 Conclusion 

We have developed a preliminary surrogate model based on the FNO for methane dispersion 

modeling. The initial result shows that it emulates the highly non-linear PDE solver from the 3D 

advection-diffusion equation very well, producing accurate simulation results comparing to the 

conventional physics-based solution. Our FNO surrogate modeling is also capable of handling the 

time-variant inputs and temporally non-smooth outputs. The FNO model provides a fast and 

accurate alternative solution to methane dispersion simulations, thus reducing the cycle time for 

emission source attribution and quantification. 
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