# An Inversion Algorithm to Investigate the State of Friction at the Base of the Greenland Ice Sheet

Aryan Jain, Jeonghyeop Kim, William Holt





### Introduction

- The Greenland Ice Sheet (GrIs) has been melting at an alarming rate
  - Losing 200 Gt ice /year
  - Largest contributor to rising global sea levels
- To combat rising sea levels, it is imperative to understand these ice flow dynamics



### **Previous Works**

- Prior work analyzed GrIs flow leveraging Ice Thickness and associated gravitational potential energy (GPE) data
- GPE calculations were unable to account for basal tractions
- Our work developing an inversion algorithm to quantify basal tractions bridges this gap



### **Methods**

- Our dataset is sourced from ETOPO1 topographical ice sheet and Sentinel-1 InSAR velocity measurements
- $\bullet \quad \overrightarrow{d} = \overline{\overline{G}}m = v_{InSAR} v_{GPE}$ 
  - $\circ$   $\vec{d}$ : velocity field derived from velocity of InSAR velocity of GPE
  - $\circ$   $\overline{\textbf{\textit{G}}}$ : Basis functions representing viscous thin-sheet responses caused by body-forces on the ice sheet
  - m: linear inversion model
- Goal to find best linear combination ( $\overline{\overline{G}}_m$ ) that predicts  $\overrightarrow{d}$

## Methods - $\overline{\overline{G}}$

- Partitioned Greenland into 10002° x 2° grid cells
- 3 Basis Functions for each grid cell:
  - E\_xx Horizontal East and West effective body-forces
  - E\_yy Horizontal North and South effective body-forces
  - E\_xy Shear effective body-forces

: body-forces

: ice-velocity



### Methods - m

- Employed Linear Regression Algorithm from sklearn library
- Applied the Least Squares Method (LSM) with the Ridge (Tikhonov) and LASSO regularization to optimize our model
- LASSO Loss:  $\left|\left|\bar{\bar{G}}m \vec{d}\right|\right|_2 + \alpha^2 ||m||_1$
- Ridge Loss:  $\left|\left|\bar{\bar{G}}m \vec{d}\right|\right|_2 + \alpha^2 ||m||_2^2$
- Used the trade-off (L-curve) criterion to determine an "optimal" smoothing parameter

**Results** 





#### **LASSO Trade Off Curve**



### **Optimal Smoothing Parameters + Performance Metrics**

|       | Best α | $R^2$  | RMSE   | MAE    |
|-------|--------|--------|--------|--------|
| Ridge | 0.1520 | 0.9734 | 6.3651 | 4.3038 |
| LASSO | 0.0324 | 0.9552 | 27.679 | 24.323 |

### Results

- Model predictions for GrIs horizontal velocity fields:
- InSAR velocities (red arrows) and model's predicted velocities (green arrows)
- Model achieves near identical fit
- Discrepancies most prevalent near edges as a result of grid cell resolution



### Results

- Model Basal Traction Predictions:
- Uncovers magnitudes and distributions of basal tractions across GrIs
- Basal Tractions lie around GrIs coastline
- Work enables scientists to relate changes in basal tractions to change in ice velocities and flux



### **Conclusions**

- Successfully predicted horizontal velocity field and associated basal tractions
- Enhances knowledge of ice flow, uncovering relationships between basal traction, velocity fields, and ice flux
- Demonstrates the promise of applying ML to gain a deeper understanding of ice sheets, giving us valuable insight towards rising sea levels needed in the fight against climate change.
- Future Works will explore use of deep learning and applications to Antarctic