Function Approximations for Reinforcement Learning Controller for Wave Energy Converters

NeurlPs 2022: Tackling Climate Change with Machine Learning Workshop

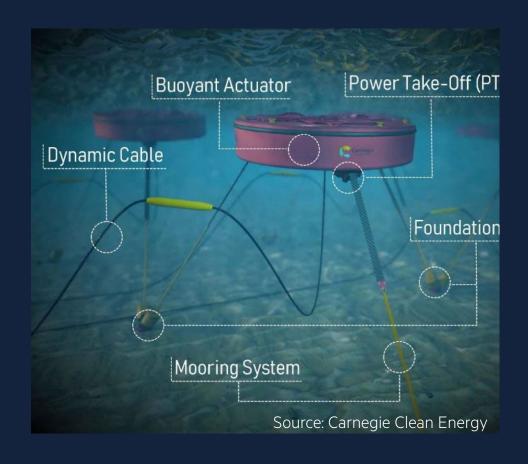
Soumyendu Sarkar¹, Vineet Gundecha¹, Sahand

Ghorbanpour¹, Alexander Shmakov¹, Ashwin Ramesh Babu¹,

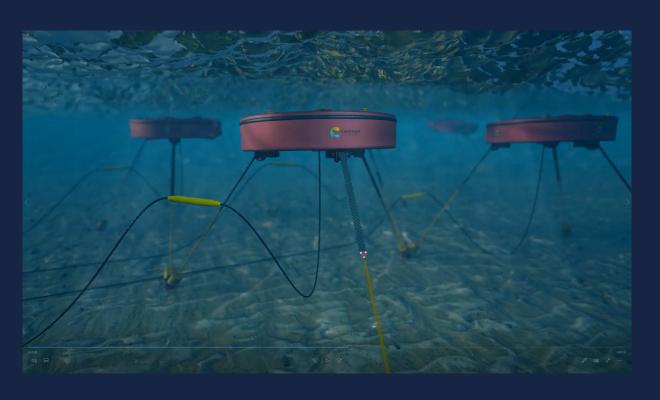
Alexandre Pichard², Mathieu Cocho²

¹ Hewlett Packard Enterprise (Hewlett Packard Labs)

²Carnegie Clean Energy

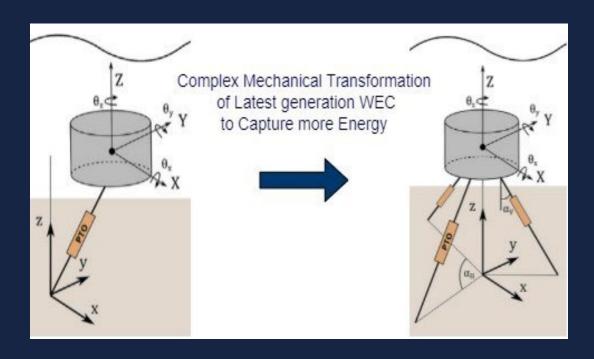


Motivation: Lowering the Levelized Cost of Energy (LCOE) for Wave Energy



- Increase in energy efficiency ↑Revenue
- Reduce structural stress ↓ Maintenance
- Protect from acute weather events

Complex Multi-generator structure ► Complex Optimal Control

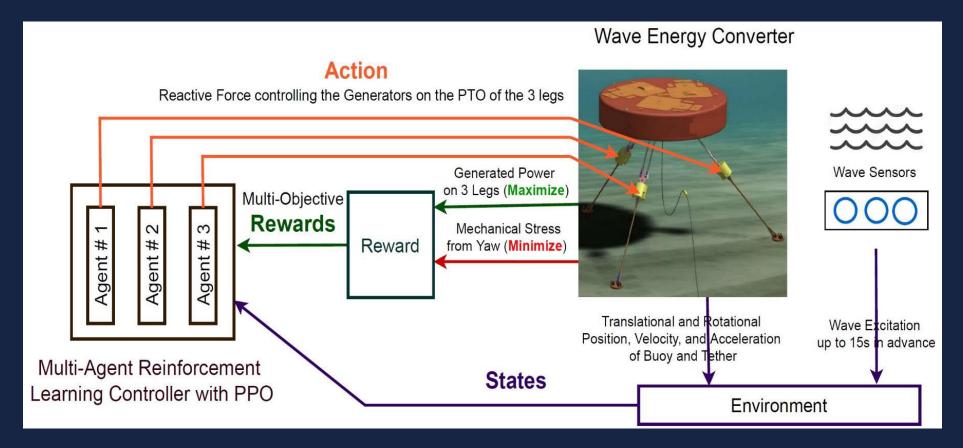


Simple Earlier
Generation
Wave Energy Converter

Complex CETO 6
Multi-Generator
Wave Energy Converter

- To maximize energy capture the simple earlier generation one generator WEC with one tether(leg) design is transformed to having 3 generators on 3 interdependent legs (tethers) to leverage translational and rotational motions
- Complexity of control has gone up significantly with the stateof-the-art Wave Energy Converters (WEC)
- Variability of the waves, angles of wave fronts and asymmetry of the WEC further complicates the control
- Existing controllers like Spring Damper are unable to leverage the full potential of this complex mechanical structure
- Reinforcement Learning is able to better control the reactive forces of the generators on multiple tethers (legs) of WEC

Reinforcement Learning System Architecture



Why Multi-Agent RL is needed?

- 3 legs and the generators on each of the legs act differently
- Heterogeneity requires Multi-Agent Reinforcement Learning

RL environment for Wave Energy Converters

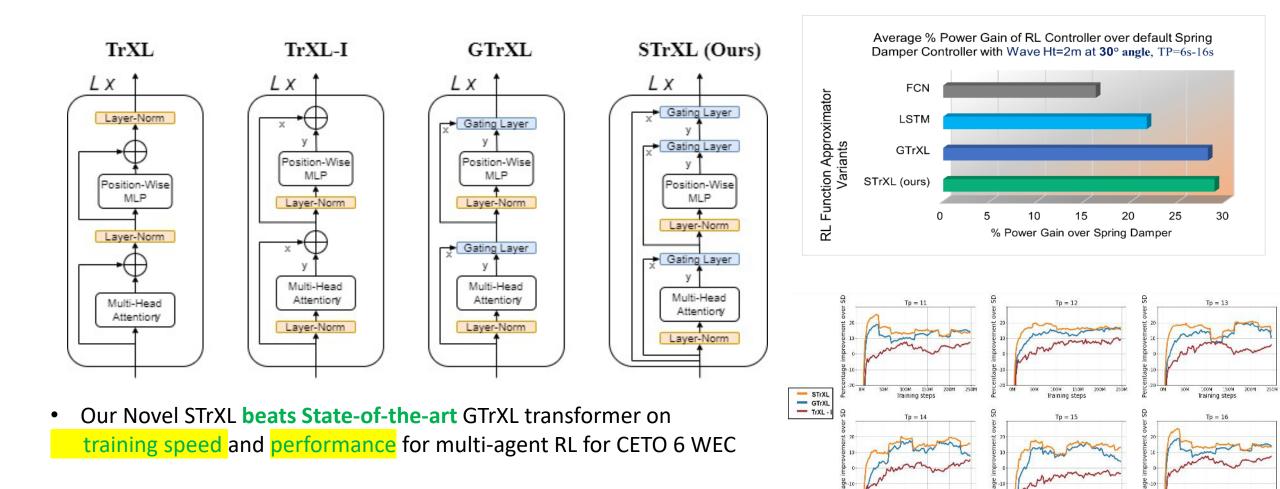
Environment States	
buoy	Translational and rotational position, velocity, acceleration
tether	Extension and velocity
wave	Elevation, and rate of change for present and 10s ahead
yaw	Stressing Rotational motion

Action

Reactive forces on 3 generators resisting tether extension and buoy movement

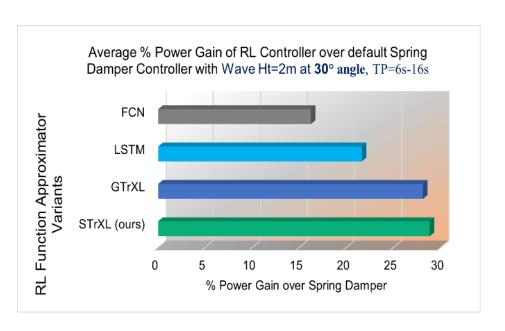
Reward	
Power	Own power and parameterized total power
Yaw	Penalty for stress

Our Novel STrXL Transformer architecture for Reinforcement Learning beats SOTA



Transformers are hard to train for multi-agent RL

Our Novel STrXL beats SOTA GTrXL on Performance and Training Speed

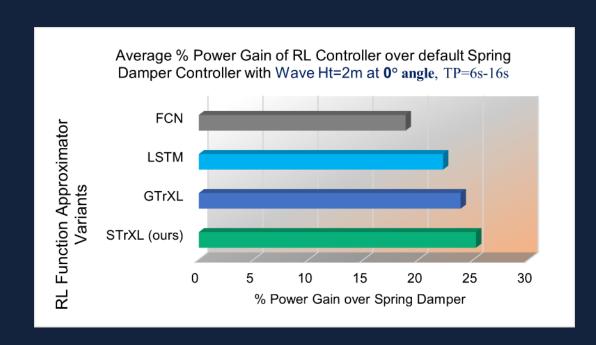


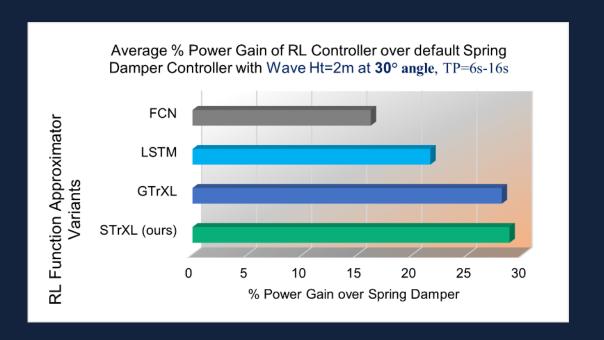
Tp = 11Tp = 12Tp = 13entage improvement 150M 200M STrXL Training steps Training steps Training steps GTrXL TrXL -Tp = 14Tp = 15Tp = 16200M 250M Training steps Training steps Training steps

Performance: our Novel STrXL beats State-of-the-art GTrXL transformer for multi-agent RL for CETO 6 WEC

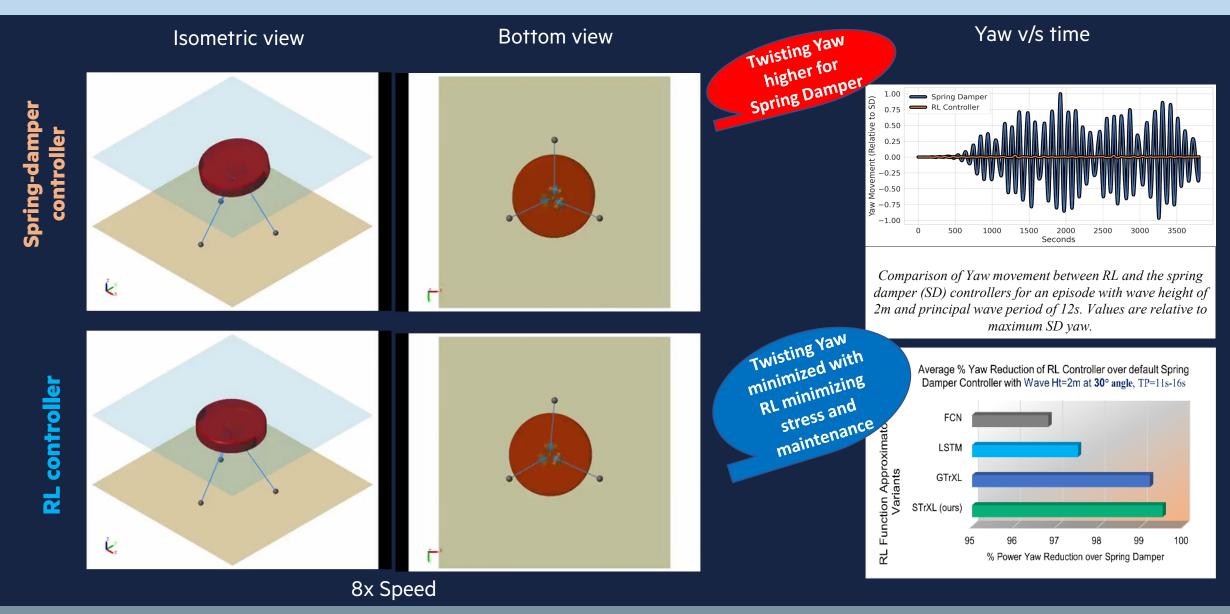
Training Speed: our Novel STrXL beats State-of-the-art GTrXL transformer for multi-agent RL for CETO 6 WEC

RL Controller Power gain (%) over default spring damper (SD) controller for different Function Approximations

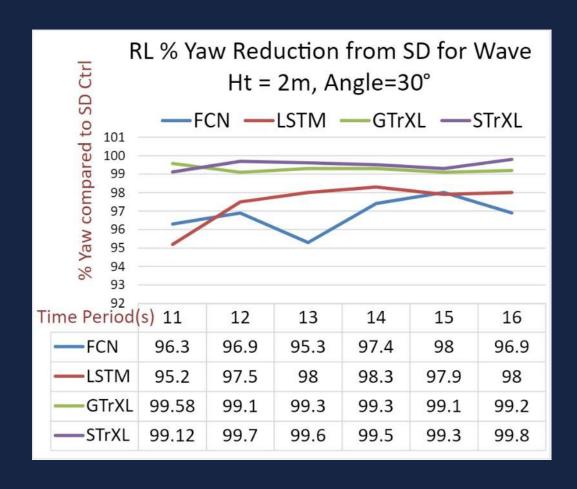


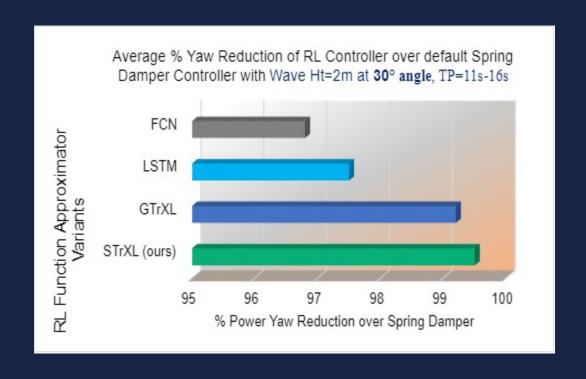


RL controller reduces stress: Yaw minimization with RL controller



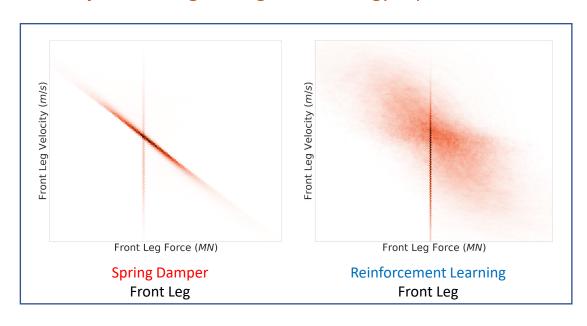
RL Controller % Yaw Reduction over default spring damper controller





Intuition behind Reinforcement Learning controller performance

- Spring Damper is more greedy and reactive forces for the generators on the legs are almost proportional to the instantaneous velocity of the tether as energy is captured working against this motion.
- RL controller is fuzzy about the proportionality of reactive force and tether (leg) velocity, as it compromises short-term
 objectives for greater gains on energy capture at the more opportune segments of the wave cycles with discounted returns.





Better co-ordination between the multiple generators and legs with varying waves and 6 degrees of motion which the
existing state of the art controllers fail to do

Impact of this work on Wave Energy Converters and beyond

- Over 25% power gains boosting revenue opportunities
- Reduced mechanical stress, which impacts maintenance and operating costs
- Actively mitigated survival conditions, helping to preserve capital investment
- This MARL architecture is applicable to other clean energy problems like wind energy, both for individual wind power generators and wind farms
- STrXL can help faster training of Transformers for RL with better performance

Thank You

Soumyendu Sarkar Hewlett Packard Labs @ Hewlett Packard Enterprise