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Abstract

Waves are a more consistent form of clean energy than wind and solar and the
latest Wave Energy Converters (WEC) platforms like CETO 6 have evolved into
complex multi-generator designs with a high energy capture potential for financial
viability. Multi-Agent Reinforcement Learning (MARL) controller can handle
these complexities and control the WEC optimally unlike the default engineering
controllers like Spring Damper which suffer from lower energy capture and me-
chanical stress from the spinning yaw motion. In this paper, we look beyond the
normal hyper-parameter and MARL agent tuning, and explored the most suitable
architecture for the neural network function approximators for the policy and critic
networks of MARL which act as its brain. We found that unlike the commonly used
fully connected network (FCN) for MARL, the sequential models like transformers
and LSTMs can model the WEC system dynamics better. Our novel transformer
architecture, Skip Transformer-XL (STrXL), with several gated residual connec-
tions in and around the transformer block performed better than the state-of-the-art
with faster training convergence. STrXL boosts energy efficiency by an average of
25% to 28% over the existing spring damper (SD) controller for waves at different
angles and almost eliminated the mechanical stress from the rotational yaw motion,
saving costly maintenance on open seas, and thus reducing the Levelized Cost of
wave energy (LCOE).
Demo: https://tinyurl.com/4s4mmb9v

1 Introduction and Motivation

Lowering the Levelized cost of energy for wave energy converters is key to bringing stability to
decarbonization of electric energy generation as it is a very reliable form of clean energy. As shown in
Figure 1(c), to maximize energy capture from all translational and rotational motion components, the
simple earlier generation one generator WEC with one tether(leg) design is transformed to having 3
generators on 3 interdependent legs (tethers) in CETO 6, that this work focuses on. The CETO WECs
have been deployed in Australia with planned deployments in Europe. The complexity of this design
coupled with the variability of waves in terms of directions, frequency components, and heights, and
the mechanical stress from yaw, needed refinements to multi-agent RL so that it can optimally control
for these multiple objectives. The main contributions of this paper can be summarized as follows:
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Figure 1: Architecture of Multi-Agent RL controlling the WEC

• Explore and evolve the sequential models of Transformers and LSTMs for the function
approximations for the policy and critic networks of multi-agent RL to model the system
dynamics better, instead of the traditional approach of just RL hyper-parameter tunings and
RL agent optimizations with fully connected neural networks(FCN).

• Propose a novel transformer block architecture Skip Transformer-XL (STrXL) which
performs better and trains faster than state-of-the-art transformers for this problem as shown
in figure 3. STrXL will also make it easier to use transformers in other RL applications
where training instability, slow speed, and computation budget make it challenging.

2 Background and Related Work

2.1 Wave Energy Converter (WEC)

The CETO 6 WEC is composed of a cylindrical Buoyant Actuator (BA), submerged approximately 2
meters under the ocean’s surface as shown in Figure 1. The BA is secured to the seabed through three
mooring legs, each of which terminates on one of the three power take-offs (PTOs) located within the
BA. The PTO resists the extension of the mooring legs, thereby generating electrical power similar to
regenerative braking in cars. Optimal timing of the PTO forces resisting the wave excitation force is
key to maximizing WEC performance. The control strategies mostly used are pure damping control,
spring damper control, latching control, model predictive control, and so on.

2.2 Related Work

RL has been applied to continuous control tasks for different applications (11), (7) (20). Research for
WEC controllers as in (1) (2) ((4)) (5) have been applied to one degree of freedom point absorbers.
(20), (24), (25) used RL to control three-legged WECs, but the design had partial success as the RL
function approximation was limited to a fully connected neural network (FCN). In this work, we
investigate a variety of ML model architectures for the actor and the critic in the PPO, which can
better learn the sequential characteristics of the WEC. Our studies show that these models outperform
the FCN by a significant margin. Also we investigate different architectural modifications like STrXL
that the transformer model needs to effectively train and converge in a MARL design.

3 Reinforcement Learning and Function Approximation

3.1 Multi-agent RL with PPO

After exploring different RL algorithms like Deep Q-Learning (DQN)(17), Soft Actor-Critic (SAC)
(8), and Asynchronous Advantage Actor-Critic (A3C) (15), we limited our focus to Proximal Policy
Optimization (PPO) ((21)) for this study as PPO outperformed other models. Also as in WECs
the generators mounted on the individual legs act quite differently based on the placement in the
mechanical structure and mean wavefront, multi-agent RL was chosen as single agent RL failed to
control the WEC effectively. The RL states, actions and rewards are explained in Figure 2 (a).
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Figure 2: Design of Multi-Agent RL for WEC and our novel STrXL Transformer Block

3.2 Function Approximation for RL

The periodic nature of ocean waves and the spring-type inertial response of the WEC require a system
model which can represent and process time series information, unlike the most widely used default
feed-forward networks (FCN) for RL. This also enables combining long-term behavior from past
observations and future wave states from sensors placed further into the ocean, into the current state.

We investigated the WEC controller performance and speed of convergence for FCN, LSTMs, and
Transformers of varying depths ((10; 22; 18; 16)) for RL policy and critic function approximators.
Transformers with multi-head attention, temporal convolution network, and contextual horizon with
relative position encoding, proved to be ideally suited for PPO function approximation for WEC. To
mitigate the limited sequence length for canonical transformers unlike LSTMs, we used the Tr-XL
architecture which keeps a memory of hidden states corresponding to previous sequences.

3.3 Skip Transformer-XL (STrXL) Architecture

Using canonical transformers as function approximators for RL is challenging as it is very difficult to
train and optimize as established by (18), Unlike supervised learning tasks ((22)). So we explored the
effect of various gated bypasses for Transformer FA on the stability and speed of training. Inspired
by residual network architecture ((9)) and expanding earlier work of (18), we propose a novel
transformer block "Skip Transformer-XL" or STrXL (Figure 2(right)). In STrXL an additional bypass
connection with a gating layer around the transformer block helps accelerate training convergence
when compared to the previous designs like GTrXL. With the layer normalization placed on the input
stream of the submodules ((18)) and tucked inside the bypass, an identity map from the transformer’s
input at the first layer to the transformer’s output after the last layer is established, unlike canonical
transformers. The state encoding is passed untransformed to the policy and value heads, enabling
the agent to learn a Markovian policy at the start of training. For WEC, the reactive behaviors need
to be learned before memory-based ones can be effectively utilized. Also, the GRU-style gating
mechanisms in place of the residual connections within the transformer block helped stabilize learning
and improved performance. This enables better performance and faster convergence during training.

4 Experiments

The CETO 6 wave energy converter (WEC) platform simulator was used to accurately model the
mechanical structure, the mechanical response, the electro-mechanical conversion efficiency for
generator and motor modes, and the fluid dynamical elements of the wave excitation. Wave data
collected from WEC deployment sites at Albany, and Garden Island in Western Australia, Armintza
in Spain (Biscay Marine Energy Platform: BiMEP) ((12)), and Wave Hub on the north coast of
Cornwall in United Kingdom ((13)) were used along with Jonswap spectrum. For evaluation, we used
1000 episodes for each principal wave period and height. For regular operation, we show results of
median wave height of 2m for the entire wave frequency spectrum spanning time periods of 6s to 16s.
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Figure 3: Left: % Increase of Energy Capture over SD controller for 0° and 30° waves for ht=2m with
different Function Approximations, Right: % Yaw Reduction by RL over SD for ht=2m, angle=30◦.

Table 1: % reduction of Yaw by RL over SD for ht=7m, angle = 30◦

WTPs 11 12 13 14 15 16 Avg
% yaw ↓ 98.8 98.8 98.9 99.1 98.9 98.6 98.6

5 Results

The power generated by the baseline spring damper controller tuned to a specific wave time period
and height under consideration is used as a reference for evaluation to estimate the gain of energy
capture by Reinforcement Learning (RL) controllers as a percentage improvement. A direction of 0°
indicates frontal waves with the wavefront aligned with the front leg, and for evaluation, we used the
same seed for sampling waves for episodes between RL and SD.

Figure 3(left) shows that for electric energy conversion at 0° frontal waves, the MARL with STrXL
performs on an average 25.2% better than the baseline spring damper (SD) controller, while the
LSTM performs 22.2% better and FCN performs 18.8% better on an average for the entire range of
wave time periods 6s to 16s. For angled waves of 30°, the MARL with STrXL (28.8%) performs
much better than LSTM (21.6%) on average. STrXL is better than state-of-the-art GTrXL, but it
trains much faster with high stability as can be seen in the appendix. The STrXL performance peaks
at a depth of 3, the LSTM at the depths of 2 and 3, and FCN at a depth of 2.

Figure 3(right) shows that for wave periods of 11s to 16s, where yaw is a significant problem of
default SD controller, the yaw is reduced by more than 99% with STrXL, significantly reducing
mechanical stress with huge maintenance savings. Even with extreme wave height of 7m, Table 1
shows that the PPO with STrXL reduces the yaw by over 98.6% over SD.

6 Conclusions

The proposed MARL controller yields 25%+ gain over the baseline Spring Damper controller (SD)
for the entire spectrum of ocean waves, boosting energy production with revenue implications. The
MARL also helped reduce mechanical stress significantly, lowering maintenance and operating
costs and actively mitigating adverse effects of high waves helping preserve capital investments and
lowering LCOE making wave energy more of a reality.

We found that robust RL function approximation sequence models of suitable architectures and
depths are key to achieving higher performance for complex real-life use cases like WEC, and RL
agent (PPO) refinements alone cannot do that. The proposed novel STxRL architecture with GRU
gated bypass inside and around the transformer block help solve the challenging training convergence
problem of RL with transformers. As STrXL trains faster and performs better than the state-of-the-art
GTrXL, it may help other complex multi-agent RL applications and facilitate greener computation.
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Appendix A Additional Results

A.1 Gain in Energy Capture and Yaw reduction for different function approximations for RL
agent

Table 2: Energy Capture Gain by the RL controller over spring damper controller for different PPO
function approximators

RL % Gain of Energy Capture over default Spring Damper (SD controller)
% Gain for Wave Height = 2m, and Wave Angle = 0 degrees

Wave Time Period(s) 6 7 8 9 10 11 12 13 14 15 16 Avg
FCN 38.4 35.4 23.0 19.7 15.1 14.1 13.5 11.9 12.9 11.7 11.4 18.8
LSTM 41.3 35.5 27.8 24.1 18.6 15.4 15.9 17 17.7 15.9 15.3 22.2
GTrXL 40.2 36.1 28.2 23.9 19.3 14.9 23.2 17.9 18.9 18.3.2 15.8 23.8
STrXL (ours) 40.1 38.9 32.2 25.2 21.4 22.3 24.1 18.5 19.0 18.1 17.1 25.2

% Gain for Wave Height = 2m, and Wave Angle = 30 degrees

Wave Time Period(s) 6 7 8 9 10 11 12 13 14 15 16 Avg
FCN 33.4 32.9 20.1 9.6 5.3 7.6 10 14.6 15.8 16.1 12.3 16.2
LSTM 34.6 33.3 26.7 20.3 14.5 14.3 16.3 20.8 17.9 20.1 18.7 21.6
GTrXL 39.2 35.2 27.6 21.8 17.1 17.8 21.3 29.4 36.9 30.6 31.9 28.1
STrXL (ours) 39.7 34.7 28.7 22.7 17.4 18.1 22.6 31.5 38.7 31.2 31.3 28.8

11 12 13 14 15 16
FCN 7.6 10 14.6 15.8 16.1 12.3
LSTM 14.3 16.3 20.8 17.9 20.1 18.7
GTrXL 17.1 21.3 29.4 36.9 30.6 31.9
STrXL 17.5 22.6 31.5 38.7 31.2 31.3
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A.2 Training speed for different function approximations for RL agent

As shown in Figure 6 the STrXL trains faster than the state-of-the-art GTrXL and TrXL-I transformer
variants with augmented trainability features.

STrXL
GTrXL
TrXL - I

Figure 6: RL Training progression for ht=2m angle=30◦ for STrXL, GTrXL, and TrXL-I function
approximators.

Appendix B Wave Energy Conveters

B.1 Wave Energy Converter (WEC)

The CETO 6 WEC is composed of a cylindrical Buoyant Actuator (BA), submerged approximately 2
meters under the ocean’s surface as shown in Figure ??. The BA is secured to the seabed through
three mooring legs, each of which terminates on one of the three power take-offs (PTOs) located
within the BA. The PTOs act like winches - they can pay in and out to allow the mooring legs to vary
in length and thus converting the chaotic motions of the BA into linear motions. The PTO also resists
the extension of the mooring legs, thereby generating electrical power similar to regenerative braking
in cars. The high-level structure of the WEC is represented in Figure 7. Optimal timing of the PTO
forces resisting the wave excitation force is key to maximizing WEC performance. Various control
strategies exist, attempting to get as close as possible to the optimal force function with various
degrees of success. These include pure damping control, spring damper control, latching control,
model predictive control, and so on.

Figure 7: (a)3D view of WEC, (b) PTO motion with 6 degrees of freedom, (c)

B.2 Spring Damper Benchmark Controller (WEC)

The PTO is composed of a mechanical spring and an electrical generator, as represented in Figure
7(c). The damping component is akin to a reactive braking torque against the input shaft, driven
by the wave energy source. The captured energy equals the braking mechanical work done by the
generator minus losses.

8



Appendix C Skip Transformer XL (STrXL)
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Figure 8: STxRL architecture with GRU gated bypass inside and around the transformer block

The STrXL block can be represented with the following equations. Referring to Figure 8, the input
to the transformer block is an embedding from the previous layer E(l−1) and the output of the
transformer block is E(l), where l ∈ [0, L] is the layer index. The Gated Recurrent Unit (GRU) type
gating is gi as shown in Figure ??. Then the multi-head attention block gated output:

¯Y (l) = MultiHeadAttention(LayerNorm(M (l−1), E(l−1)))

Y (l) = g
(l)
1 (E(l−1), ReLU(Ȳ (l)))

The MLP block gated output:

Ē(l) = f (l)(LayerNorm(Y (l))),

Ê(l) = g
(l)
2 (Y (l), ReLU(Ē(l)))

The STrXL gated output:

Ê(l) = g
(l)
3 (E(l−1), ReLU(Ê(l)))
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