Leveraging machine learning for identify
hydrological extreme events under global
climate change
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Introduction

Under future climate projection scenarios, the frequency of
extreme hydrological events has been increased

The hydrological extreme events occurred in California during the
past decades.
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Case study region and Dataset

O Abnormally Dry
© Moderate Drought
© Severe Drought

el « Coastal California watersheds

« Rainfall (42) and streamflow
(12) gauge (1980-2015, daily)

https://ww2.kged.org/science/2017/03/10/color-me-dry-drought-maps-
blend-art-and-science-but-no-politics/
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https://ww2.kqed.org/science/2017/03/10/color-me-dry-drought-maps-

Methods

Extreme events threshold-based approaches:
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 Peak over threshold (POT)

« Annual max/min daily hydrological information




Methods

Machine Learning model approaches:
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« LSTM autoencoders (unsupervised anomaly detection)

e LSTM based semi-supervised anomaly detection




Expected Deliverables

Flowchart Deliverables
Hydroclimate variables « Develop a ML-based anomaly detection model

with semi-supervised approaches

Data preprocessing

I . . .
—— This model can easily apply to any other region
1. paramleter setup . . . . .
2. encoding and run with climate projection scenarios.
3 ecoding
4. reconstruct signals . .
 This proposed modeling would serve as an early
Anomaly
detection warning system for natural disaster response.
y EXTREME
Compared among three DROUGHT IN EFFECT

model approaches

Identify droughts and floods
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