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Motivation

- Climate simulations via GSMs are used widely
for research

- They also inform policy, and legal action

- They aren't perfect representations of the
world

- We need to make best use of the simulation

results via post-processing

https://news.mit.edu/2018/new-climate-modeling-alliance-clima-1212




The status-quo: Quantile mapping

Quantile mapping is defined as:

Pops = For L (Facrm(zaon: 0); 0)

where

Faom(@aonr0)

is the cumulative distribution function calculated from the GCM (simulation) of variable x at

location 8
H

Fobs (370653 9)

is the cumulative distribution function calculated from the observations - and we use its inverse
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The status-quo: Quantile mapping

Quantile mapping is defined as:

- =

Tops = Fop (Faom(Taon; 0); 0)

Doesn’t take into account:

- Spatial correlations
- Cross variable correlations (e.g. temperature vs pressure)
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We cannot have corresponding pairs

For this task, we cannot collect prediction pairs like {?(Z(\[ f(fbs}

- Even a perfect simulator will diverge - Abiased simulator may never revisit of
initial states where data was collected
- Pairs can only be collected for short time - Cause misalign between train and test data

observations observations
simulations simulations
e start e start

Towards debiasing climate simulations using unsupervised image-to-image translation networks



Unsupervised image-to-image translation networks
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Liu, Ming-Yu, Thomas Breuel, and Jan Kautz. "Unsupervised image-to-image translation networks." Advances in neural
information processing systems. 2017.
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the IEEE international conference on computer vision. 2017.



The UNIT network
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Components of loss

- L1 loss onimage
reconstruction

- L1 cycle consistency loss

- GAN loss on translation
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Data sources and extent

Climate simulation data source Spatial extent
- HadGEM3 - South Asian monsoon region
. C20C+ archive - Haslarge known biases in GCMs
] ) ) i - Hard case to get correct
- Historical recreation scenario -~ 8°S-30°N
- 44°E-121°E

“Observations” source

-  ERA5S

Physical variables

Time overlap
- Daily min, mean and max temperature

- Jan 1979 - Dec 2013 - Daily total precipitation
_ ApprOX. 12 000 days - Z500 geopotential helght
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UNIT improves monsoon circulation bias
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Single example

For precipitation only, other 4 variables not plotted
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A sample HadGEM3 Its UNIT translation Its quantile mapped
field with a biased translation
precipitation
weather system

Unrealistic weather system



Spatial matching

To assess spatial plausibility of fields

% T HadGEM3
. o
1. Take each precipitation field from 14 | 1 UNIT

HadGEM3/QM/UNIT

2. Measure structural similarity index measure to all
ERAS precipitation fields

3. Keepscore of best match

Distribution of best matches

0.10 0.15 0.20 0.25 0.30 0.35
Maximum precipitation?** SSIM

The UNIT translated HadGEMS3 data had spatial structures
with better matches to the ERA5 data,.
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Cross-variable biases

- Joint distribution sampled from
single spatial location

- UNIT captures, but
over-exaggerates joint
distribution structure
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Conclusion

UNIT network

- Removes major bias in HadGEMS3 precipitation
- Produces precipitation spatial patterns which better match the observations, when compared to

baseline
- Corrects thejoint distribution of variables at individual spatial locations

Further developments in techniques that would be beneficial

- Translation with distributions with long tails
- Avoid collapse towards modes in joint-distributions - i.e. more diversity
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