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Summary of this work

• Subsurface water storage (SWS) plays a critical role in climate-change 
projections and can mitigate the impacts of climate change on ecosystems. 

• However, because of the difficult accessibility of the underground, hydrologic 
properties and dynamics of SWS are poorly known. Direct observations of SWS 
are limited, and accurate incorporation of SWS dynamics into Earth system land 
models remains challenging.

• We propose a machine learning-enabled model-data integration framework to 
improve the SWS prediction at local to conus scales in a changing climate by 
leveraging all the available observation and simulation resources, as well as to 
inform the model development and guide the observation collection.
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Machine Learning–enabled Model-Data Integration
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The proposed framework consists of three interconnected capabilities 

• (I) a data-model informed prediction that links model and data and 
sufficiently extracts their information for prediction with considering 
various sources of uncertainty; 

• (II) a model-driven data collection that analyzes data limits to 
predictability, identifies informative data, and guides data investment 
to enhance predictive skill; 

• (III) a data-driven model improvement that analyzes model limits to 
predictability, identifies model deficiency, and complements missing 
physics with ML models to advance model development.

Machine Learning–enabled Model-Data Integration
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Capability I: A Novel Data-Model Informed Prediction

• The proposed prediction framework focuses on leveraging ML 
techniques to learn a relationship between data and prediction 
variables, and then deploys this learned ML model for direct 
prediction based on the actual observations.
– Bayesian deep neural networks to learn the data-prediction relationship;

– Surrogate modeling to accelerate the forward simulation;
– Dimension reduction and feature detection to extract sample information;
– Continual learning to assimilate data streams.
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Capability II: Model-Driven Data Collection

• We propose to use feature detection and sensitivity analysis to guide 
the spatiotemporal data acquisition.
– Feature detection techniques to identify where, what type and how much data

are needed to improve the prediction.
– A two-way global sensitivity analysis to identify key data variables and 

locations that constrain those uncertain parameters and processes that have 
a vital impact on predictions.

– A value of information analysis for the cost-effective observational design.
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Capability III: Data-Driven Model Improvement

• Model falsification and casual analysis will be used to inform the 
SWS dynamics implementation in physics-based land models.
– Model falsification to analyze the consistency between the model generated 

data samples and the actual observations.
– Causal analysis to explore the underlying variable interconnections from the 

data and generate new hypothesis.

– A data-driven ML model from the hypothesis generation to compensate the 
missing SWS dynamics in the physics-based model.
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Impacts and Future work

• SWS is a key variable of the climate system. It constrains plant 
transpiration and photosynthesis, with consequent impacts on the 
water, energy and biogeochemical cycles. 

• SWS is involved in several feedbacks at the local, regional and global 
scales, and plays a major role in climate-change projections.

• We identified four intensively studied watersheds with diverse 
geology and climate for demonstration of the proposed idea. 

• Diverse data sources at these four sites will provide inputs for the ML 
analysis. After testing and refining the techniques on the local scale, 
we will extend the framework to a continental scale.


