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Introduction

• The devastating impacts of natural disasters [1]
• $210 billion worldwide
• $95 billion in the US

• The effect of the climate change [2, 3]
• Introduction of DEM [4]
• Importance of high-resolution DEM [5, 6, 7]
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Related Work

• Similarity between image and DEM [8, 9]
• Neural network based super-resolution methods [8, 9, 10]
• D-SRCNN [8]
• DPGN [9]
• D-SRGAN [10]

• Effort of more efficient designs [11]
• EfficientNets [12, 13]
• MobileNets [14, 15]
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Related Work

MobileNetV3 extends the MobileNetV2 
inverted bottleneck structure by adding h-swish 
and mobile friendly squeeze-and-excitation as 
searchable options.

Unlike conventional scaling methods (b)-(d) that arbitrary scale a single 
dimension of the network, EfficientNet’s compound scaling method uniformly 
scales up all dimensions in a principled way.
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Approach

Block#1 Block#2 Block#3 Block#4 Block#5 Block#6 

# of Channels 24 48 64 128 160 256

Expansion ratio 1 4 4 4 6 6

#ofLayers 2 4 6 6 9 15

Architecture of Proposed Method 

MobileNet blocks in our model
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Data

Avg. Elevation (m) Min. Elevation (m) Max. Elevation (m) 

Training 653.1 205.7 984.9

Test 621.7 230.0 982.7

Statistical Summary of Dataset

• Total area of 732 km2

• Training => 590 km2

• Test => 142 km2

• Collected from Wake and Guilford, North Carolina
• approximately 2 points per square meter
• 3 feet => high-resolution
• 5 feet => low-resolution
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Results

Bicubic Bilinear D-SRCNN[8] DPGN[9] D-SRGAN[10] EfficientNetV2-DEM 

Training 0.968 1.141 0.900 0.758 0.766 0.625 

Test 0.946 1.124 0.872 0.803 0.753 0.640 

The Performance Comparison of Different Methods as MSE in meters 
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Thank you

Any questions?
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