

DEM Super-Resolution with EfficientNetV2

Bekir Demiray, Muhammed Sit, Ibrahim Demir

Presented by: Bekir Demiray

Outline

- Introduction
- Related Work
- Approach
- Data
- Results

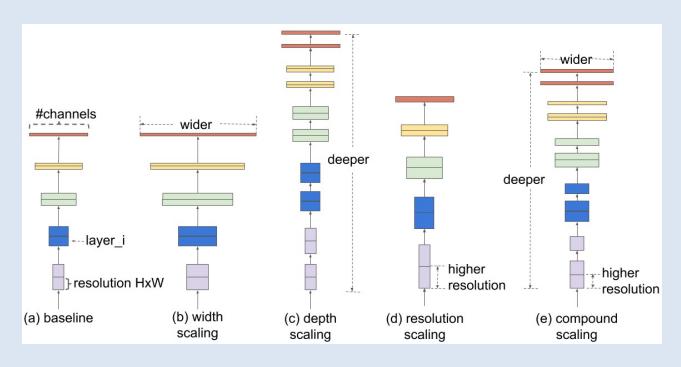
Introduction

- The devastating impacts of natural disasters [1]
 - \$210 billion worldwide
 - \$95 billion in the US
- The effect of the climate change [2, 3]
- Introduction of DEM [4]
- Importance of high-resolution DEM [5, 6, 7]

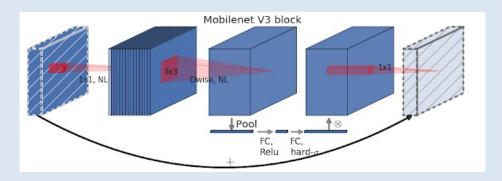
Related Work

- Similarity between image and DEM [8, 9]
- Neural network based super-resolution methods [8, 9, 10]
 - D-SRCNN [8]
 - DPGN [9]
 - D-SRGAN [10]
- Effort of more efficient designs [11]
 - EfficientNets [12, 13]
 - MobileNets [14, 15]

Related Work

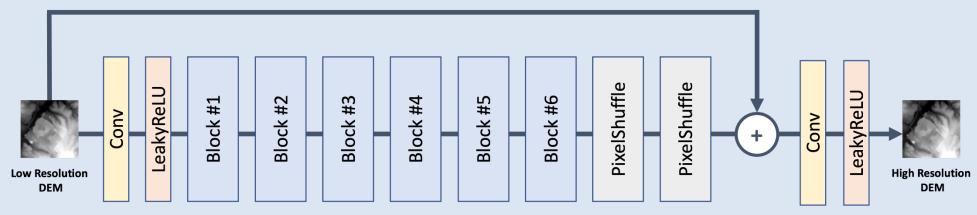


Unlike conventional scaling methods (b)-(d) that arbitrary scale a single dimension of the network, EfficientNet's compound scaling method uniformly scales up all dimensions in a principled way.



MobileNetV3 extends the MobileNetV2 inverted bottleneck structure by adding h-swish and mobile friendly squeeze-and-excitation as searchable options.

Approach



Architecture of Proposed Method

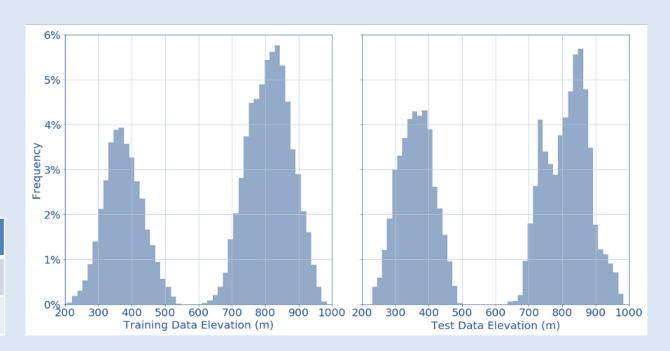
	Block#1	Block#2	Block#3	Block#4	Block#5	Block#6
# of Channels	24	48	64	128	160	256
Expansion ratio	1	4	4	4	6	6
#ofLayers	2	4	6	6	9	15

MobileNet blocks in our model

Data

- Collected from Wake and Guilford, North Carolina
 - approximately 2 points per square meter
 - 3 feet => high-resolution
 - 5 feet => low-resolution
- Total area of 732 km²
 - Training => 590 km²
 - Test => 142 km²

	Avg. Elevation (m)	Min. Elevation (m)	Max. Elevation (m)
Training	653.1	205.7	984.9
Test	621.7	230.0	982.7

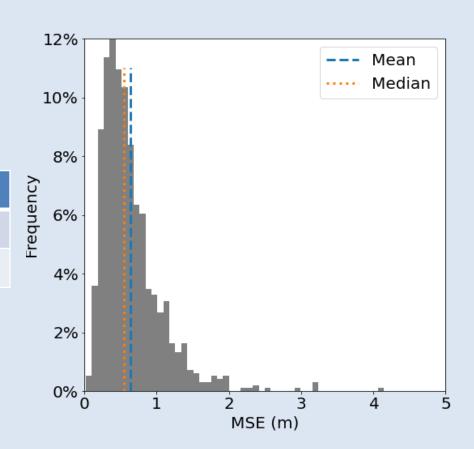


Statistical Summary of Dataset

Results

	Bicubic	Bilinear	D-SRCNN[8]	DPGN[9]	D-SRGAN[10]	EfficientNetV2-DEM
Training	0.968	1.141	0.900	0.758	0.766	0.625
Test	0.946	1.124	0.872	0.803	0.753	0.640

The Performance Comparison of Different Methods as MSE in meters



Thank you

Any questions?

References

- 1. Munich Re. Record hurricane season and major wildfires the natural disaster figures for 2020. https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2021/2020-natural-disasters-balance.html, 2020. [Online; accessed 30-May-2021].
- 2. Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Scientific reports, 10(1):1–10, 2020.
- 3. The National Centers for Environmental Information. Us billion-dollar weather and climate disasters. https://www.ncdc.noaa.gov/billions/, 2021. [Online; accessed 30-May-2021].
- 4. Florinsky I. Digital terrain analysis in soil science and geology. Cambridge: Academic Press; 2016.
- 5. D.-E. Kim, P. Gourbesville, and S.-Y. Liong, "Overcoming data scarcity in flood hazard assessment using remote sensing and artificial neural network," Smart Water, vol. 4, no. 1, pp. 1–15, 2019.
- 6. M. Sit, B. Demiray, and I. Demir, "Short-term hourly streamflow prediction with graph convolutional gru networks," arXiv preprint arXiv:2107.07039, 2021.
- 7. J. Vaze, J. Teng, and G. Spencer, "Impact of dem accuracy and resolution on topographic indices," Environmental Modelling & Software, vol. 25, no. 10, pp. 1086–1098, 2010.

References

- 8. Z. Chen, X. Wang, Z. Xu et al., "Convolutional neural network based dem super resolution." International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 41, 2016.
- 9. Z. Xu, Z. Chen, W. Yi, Q. Gui, W. Hou, and M. Ding, "Deep gradient prior network for dem super-resolution: Transfer learning from image to dem," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 150, pp. 80–90, 2019.
- 10. B. Z. Demiray, M. Sit, and I. Demir, "D-srgan: Dem super-resolution with generative adversarial networks," SN Computer Science, vol. 2, no. 1, pp. 1–11, 2021.
- 11. Z. Wang, J. Chen, and S. C. Hoi, "Deep learning for image super-resolution: A survey," IEEE transactions on pattern analysis and machine intelligence, 2020.
- 12. M. Tan and Q. Le, "Efficientnet: Rethinking model scaling for convolutional neural networks," in International Conference on Machine Learning. PMLR, 2019, pp. 6105–6114.
- 13. M. Tan and Q. V. Le, "Efficientnetv2: Smaller models and faster training," arXiv preprint arXiv:2104.00298, 2021.
- 14. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4510–4520.
- 15. A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., "Searching for mobilenetv3," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1314–1324.