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Introduction and Motivation



Task Description

Task: Snow Grain Classification and Snow Layer Segmentation

- Given a pack of snow, automatically:
- Segment it into different snow layers and
- Classify the snow grain type of each snow layer
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Snow Micro Pen (SMP)

Fast, high-resolution, portable measuring device

[SLF, 2021] Snow Micro Pen



SMP Profile Example: Manual Labelling
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Why automatic?

- Classify large SMP datasets (e.g. MOSAIC dataset)
- Fast analysis (e.g. avalanche prediction)
- No human training required (e.g. in remote sensing)



Data



Labelled MOSAiIC SMP dataset

MOSAIC [Shupe et al., 2020] SMP dataset:

- Snow on arctic sea ice
- 160 / 3680 profiles are labelled
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Methods



Framework

Preprocess SMP Profiles

Hyperparameter tune each of the 14 models

Compare results



Classification and Segmentation

First classify, then segment

1. Classification

2. Segmentation




Results and Discussion



Results - Accuracy
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Results - Accuracy

Some grain types are more difficult to classify than others
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Results - Accuracy
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Results - Accuracy
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Performance in Metrics

Model Absolute  Balanced Precision F1Score ROC AUC Log Loss Fitting Scoring
Accuracy  Accuracy Time Time
Majority Vote  0.39 0.14 0.15 0.22 nan nan <1 <1073
K-means 0.62 0.44 0.60 0.61 nan nan 385 0.01
GMM 0.65 0.36 0.57 0.61 nan nan 151 0.008
BGMM 0.65 0.38 0.63 0.63 nan nan 225 0.009
Self trainer 0.69 0.67 0.74 0.71 0.92 0.84 19 0.29
Label propagation 0.71 0.54 0.72 0.71 0.92 1D 10 3.35
Random Forest 0.73 0.60 0.73 0.73 0.93 0.70 72 0.97
Balanced RF  0.70 0.67 0.74 0.71 0.92 0.84 9.9 0.58
SVM 0.71 0.66 0.73 0.71 0.93 0.67 19 7.45
KNN 0.71 0.54 0.71 0.71 0.89 3.58 <1 1.84
Easy Ensemble 0.62 0.59 0.70 0.64 0.88 1.66 46 425
BLSTM 0.74 0.58 0.74 0.73 0.93 0.79 975 3.4
Encoder Decoder 0.78 0.54 0.78 0.77 0.94 0.64 2911 5.8
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Conclusion



Conclusion

Summary:

First systematic comparison between ML models for the
segmentation and classification of SMP profiles

Future Work:
Test generalization capabilities (e.g. on different seasons)
Impact:

Makes knowledge behind cryospheric data accessible

— Essential for understanding and mitigating climate change
impacts



Thank you for your attention!



Contact and Resources

Please drop me a line if you have any questions:
julia.kaltenbornamail.mcgill.ca

GitHub Repository:
https://github.com/liellnima/snowdragon

16


https://github.com/liellnima/snowdragon
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