Machine Learning for Snow Stratigraphy Classification

Julia Kaltenborn Amy R. Macfarlane, Viviane Clay, Martin Schneebeli

Introduction and Motivation

Task Description

Task: Snow Grain Classification and Snow Layer Segmentation

- Given a pack of snow, automatically:
- Segment it into different snow layers and
- · Classify the snow grain type of each snow layer

Snow Micro Pen (SMP)

Fast, high-resolution, portable measuring device

[SLF, 2021] Snow Micro Pen

SMP Profile Example: Manual Labelling

Motivation

Why automatic?

- · Classify large SMP datasets (e.g. MOSAiC dataset)
- Fast analysis (e.g. avalanche prediction)
- No human training required (e.g. in remote sensing)

Data

Labelled MOSAiC SMP dataset

MOSAiC [Shupe et al., 2020] SMP dataset:

- Snow on arctic sea ice
- · 160 / 3680 profiles are labelled

Methods

Framework

Classification and Segmentation

Results and Discussion

Some grain types are more difficult to classify than others

Performance in Metrics

Model	Absolute Accuracy	Balanced Accuracy	Precision	F1 Score	ROC AUC	Log Loss	Fitting Time	Scoring Time
Majority Vote	0.39	0.14	0.15	0.22	nan	nan	< 1	$< 10^{-3}$
K-means	0.62	0.44	0.60	0.61	nan	nan	385	0.01
GMM	0.65	0.36	0.57	0.61	nan	nan	151	0.008
BGMM	0.65	0.38	0.63	0.63	nan	nan	225	0.009
Self trainer	0.69	0.67	0.74	0.71	0.92	0.84	19	0.29
abel propagation	0.71	0.54	0.72	0.71	0.92	1.5	10	3.35
Random Forest	0.73	0.60	0.73	0.73	0.93	0.70	72	0.97
Balanced RF	0.70	0.67	0.74	0.71	0.92	0.84	9.9	0.58
SVM	0.71	0.66	0.73	0.71	0.93	0.67	19	7.45
KNN	0.71	0.54	0.71	0.71	0.89	3.58	≤ 1	1.84
Easy Ensemble	0.62	0.59	0.70	0.64	0.88	1.66	46	42.5
LSTM	0.75	0.58	0.75	0.75	0.94	0.63	349	2.3
BLSTM	0.74	0.58	0.74	0.73	0.93	0.79	975	3.4
Encoder Decoder	0.78	0.54	0.78	0.77	0.94	0.64	2911	5.8

Conclusion

Conclusion

Summary:

First systematic comparison between ML models for the segmentation and classification of SMP profiles

Future Work:

Test generalization capabilities (e.g. on different seasons)

Impact:

Makes knowledge behind cryospheric data accessible

 \longrightarrow Essential for understanding and mitigating climate change impacts

Thank you for your attention!

Contact and Resources

```
Please drop me a line if you have any questions: julia.kaltenborn@mail.mcgill.ca
```

GitHub Repository: https://github.com/liellnima/snowdragon

References i

Shupe, M. D., Rex, M., Dethloff, K., Damm, E., Fong, A., Gradinger, R., Heuzé, C., Loose, B., Makarov, A., Maslowski, W., et al. (2020). Arctic report card 2020: The mosaic expedition: A year drifting with the arctic sea ice.

SLF, W. (2021).

Snowmicropen.

https://www.slf.ch/de/ueber-das-slf/ versuchsanlagen-und-labors/kaeltelabor/ snowmicropenr.html.

accessed: 2021-01-27