NoFADE: Analyzing Diminishing Returns on CO2 Investment

Andre Fu (University of Toronto); Justin B Tran (University of Toronto); Andy Xie (University of Toronto); Jonathan T Spraggett (University of Toronto); Elisa Ding (University of Toronto); Chang-Won Lee (University of Toronto); Kanav Singla (University of Toronto); Mahdi S. Hosseini (University of New Brunswick); Konstantinos N Plataniotis (University of Toronto)

Motivation

- Reducing CO2 emissions is essential for curbing climate change effects.
 - IPCC warns that warming of 1.5-2.0°C is likely in the coming decades.
- Previous work on CO2 emission-CV model relationships is not dataset agnostic.
- NoFADE: Normalized FLOPS for Accuracy-Dataset Entropy
 - Evaluation metric for model-dataset pair complexity.
 - Show diminishing returns on higher complexity/emissions.

Diminishing Returns

- Extracted Top-1 Test-accuracy, mAP or mIOU, FLOPS, GPU hours and GPU type.
 - 13 Classification, 22 Segmentation, and 10 Detection papers
- Formula for CV model power draw:

$$P_m[Wh] = f \times (\omega_g + \omega_c) \times GPU \ hours$$

Conversion to emissions:

$$CO2 = P_m \cdot 0.707 \times 10^{-3}$$

Diminishing Returns

- Most datasets show accuracy saturation at higher complexity
 - Diminishing returns on CO2 investment

NoFADE Development

- NoFADE allows for model-dataset-complexity agnostic comparisons.
- Dataset Complexity
 - Shannon entropy (segmentation, detection)
 - $H(image) = -\sum_{i=1}^{K} p_i \cdot log p_i$
 - Sum of Jensen-Shannon distances between classes (classification)

•
$$JSD(P||Q) = \sqrt{\frac{1}{2}D_{KL}(P||M) + \frac{1}{2}D_{KL}(Q||M)}$$

• Relationship between models and datasets, normalized for computational complexity by log FLOPS:

$$NoFADE = \frac{test\ accuracy \times Entropy\ or\ JSD}{\log FLOPS}$$

NoFADE: Dataset Complexity

- Jensen-Shannon distances
 - CIFAR-10, CIFAR-100
- Shannon entropy
 - COCO, Cityscapes, Pascal VOC

NoFADE Results

- Models with high accuracy and large FLOPS have low NoFADE scores (eg. ViT transformer models).
 - Complexity cost is penalized.
 - Aim for higher NoFADE scores.

Conclusion

- Established role of the CV community in global climate change.
- Proposed a metric to track CO2 emissions arising from model training.
- Promote environmental consciousness and model efficiency.
- Encourage researchers to use NoFADE in model-dataset selection to reduce environmental impact.