
EcoLight: Reward Shaping in Deep Reinforcement
Learning for Ergonomic Traffic Signal Control

Pedram Agand
Department of Computer Science

Simon Fraser University
Burnaby, Canada
pagand@sfu.ca

Alexey Iskrov
Breeze Traffic

Vancouver, Canada
alexey@breezetraffic.com

Mo Chen
Department of Computer Science

Simon Fraser University
Burnaby, Canada

mochen@cs.sfu.ca

Abstract

Mobility, the environment, and human health are all harmed by sub-optimal control
policies in transportation systems. Intersection traffic signal controllers are a crucial
part of today’s transportation infrastructure, as sub-optimal policies may lead to
traffic jams and as a result increased levels of air pollution and wasted time. Many
adaptive traffic signal controllers have been proposed in the literature, but research
on their relative performance differences is limited. On the other hand, to the
best of our knowledge there has been no work that directly targets CO2 emission
reduction, even though pollution is currently a critical issue. In this paper, we
propose a reward shaping scheme for various RL algorithms that not only produces
lowers CO2 emissions, but also produces respectable outcomes in terms of other
metrics such as travel time. We compare multiple RL algorithms — sarsa, and
A2C — as well as diverse scenarios with a mix of different road users emitting
varied amounts of pollution.

1 Introduction

People spend a considerable and unnecessary amount of time and money on roadways, sometimes
due to traffic lights not being responsive to the traffic. According to Forbes [1], traffic congestion
costs US $124 billion per year. Likewise, [2] states that traffic congestion costs up to 1% of the
European Union’s GDP. Air pollution is responsible for about three million deaths worldwide each
year, according to [3]. One-third of all pollution-based mortalities in North America are attributed to
land traffic emissions [4]. In 2017, residents of Los Angeles, New York, and San Francisco spent
an average of three to four days per year stuck in traffic, wasting ten billion dollars in fuel and
individual time waste, according to [5]. Needless to say, optimizing traffic flow is a critical issue, and
an important subproblem is traffic light optimization at intersections.

A number of approaches have been proposed for constructing traffic light control policies. For
example, a fixed-time, cycle-based traffic signal controller that chooses the next phase by displaying
the phases in an ordered sequence known as a cycle, with each phase having a fixed, potentially
unique duration. Since traffic needs to follow predictable patterns over long periods of time (i.e.,
times of the day, days of the week), simple fixed-time approaches are common in transportation
networks because they are predictable, stable, and effective. Researchers have long attempted to build
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Figure 1: Intersection has through, left, and right option in each lane with different road user: yellow
for car, blue for truck, green for bus, red for light truck. Interpreter render the computation.

new traffic signal controllers that can adjust to changing traffic conditions, despite the fixed-time
controller’s widespread use.

Actuated traffic signal controllers create dynamic phase durations using sensors and Boolean logic [6].
To react to changing intersections, adaptive traffic signal controllers can use acyclic phase sequences
and dynamic phase durations. They strive for improved performance at the cost of complexity, high
expenses, and dependability and have been proposed using a variety of methodologies, including
analytic mathematical solutions, heuristics, and machine learning [7, 8, 9]. There are numerous
learning based approaches in the literature such as tabular Q learning [10], DQN [11], DDPG [12].
Traditional reinforcement learning is difficult to implement due to two major issues: (1) how to define
the state space to adequately describe the environment, (2) how to define the action space to capture
decisions for changing the traffic lights, (3) how to choose a reward function to effectively targets the
cost functions [13].

In much of past work, reward has been defined as an ad-hoc weighted linear combination of numerous
traffic measures. However, there is no certainty that the reward will reduce the journey duration.
Furthermore, in order to take into account more aspects of the traffic condition, recent RL techniques
incorporate more sophisticated states (e.g., image). However, none of the prior research has analyzed
whether such a complex state representation is required. This added complexity may result in a less
efficient learning process without a considerable improvement in performance.

To the best of our knowledge, this paper is the first attempt of traffic control optimization that directly
targets CO2 reduction in a complex intersection including different types of vehicles. To this end, we
propose a reward shaping scheme that weighs different classes of road users such as cars, trucks and
buses differently. This additional hyper-parameter allows us to adjust to different scenarios and real
world objectives.

2 Method

This section will describe the design process and reward shaping scheme we propose for complex
intersections. We also provide guidelines for choosing the weights used in the reward function. The
structure is shown in Fig. 1a, where the interpreter is the box handling the computation of state
variables and handle the reward function based on the objective.

2.1 Agent design

The proposed state observation is a concatenation of the most recent green phase, the density, queue
length, and the type of the vehicle of incoming lanes at the intersection at time t. Consider the density
of a lane j, denoted Dj , as follows:

Dj =
Nj

L̄G
(1)

where G is the average length of vehicles plus the minimum gap between stationary vehicles, Nj

is the total number of vehicles in lane j and L̄ is the average length of lane. It is assumed each
intersection has a set Lin of incoming lanes, Lout of outgoing lanes and a set of green phases P . The
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state space is then defined as S ∈ (R3Lin × BP+1). The density, queue and type of each lane are
normalized to the range [0, 1] by dividing by the lane’s jam density kj and lane’s maximum emission
Emax. The most recent phase is encoded as a one-hot vector BP+1, where the plus one encodes
the all-red clearance phase. The proposed action space for the traffic signal controller is the next
green phase. The agent selects one action from a discrete set, in this model one of the many possible
green phases at ∈ P . After a green phase has been selected, it is enacted for a duration equal to the
minimum green phase Tg,min and it can remain unchanged up to Tg,max.

2.2 Reward shaping

We consider three different rewards: queue length, waiting time, and pressure. In the following, we
will introduce the original ([14]) and the weighted version.
Queue length:

Rq = −(
∑

j∈Lin

NHj)
2 (2)

where NHj is the number of halting vehicles, defined as vehicles travelling less than 5 km/h in the
lane j. The weighted version is described as follows:

Rwq = −(
∑

j∈Lin

NwHj)
2, NwHj =

NHj∑
k=1

Wk (3)

where Wk is a weight that depends on the type of each vehicle k.
Waiting time:

Rw = 0.01
∑

j∈Lin

(
Tj,t − Tj,t−1

)
(4)

where Tj,t is the overall waiting time of lane j in step t. The weighted version is defined as follows:

Rww = 0.01
∑

j∈Lin

(
Twj,t − Twj,t−1

)
, Twj =

Nj∑
k=1

WkTjk (5)

where Tjk is the waiting time of k-th vehicle in the j-th lane.
Pressure:

Rp = −|
∑

j∈Lin

Nj −
∑

j∈Lout

Nj | (6)

The weighted version is defined as follows:

Rwp = −|
∑

j∈Lin

Nwj −
∑

j∈Lout

Nwj |, Nwj =

Nj∑
k=1

Wk (7)

2.3 Weight selection

We Suggest three ways to choose the weights. The first is to choose a constant value for each type of
vehicle. This constant value can be optimized in different settings. The second approach is to choose
the weights based on normalized emissions of each lane, which means all of the vehicles in each lane
will get an equal weight according to their lane. This normalized number is calculated as follows:

Wj =
Ej − Ē
EmaxNj

(8)

where Ej , Ē are the total and medium CO2 emission in lane j respectively. The third is to consider
adaptive weights equal to the normalized version of the corresponding vehicle concurrent emission.
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(a) CO2 emission (b) Stopped time

(c) travel time (d) Reward

Figure 2: Results for weighted waiting time with Sarsa algorithm

3 Experiments

3.1 Setup

Softwares used include SUMO v1.9.2, Pytorch v1.8.1., Stable-Baselines, Stable-Baseline3 (SB3)
v1.0, Python v3.7. We use Adam optimizer [15]. The scenario in the SUMO environment is shown in
Fig. 1b. Given the average velocity of lane j, V̄j , travel time is computed as follows:

T =
L̄
∑

j∈Lin∪Lout
Nj∑

j∈Lin∪Lout
(V̄jNj)

(9)

3.2 Comparison

We chose the minimum green length to be Tg,min = 10 and maximum green length to be Tg,max = 50.
For a quantitative comparison, the resulting travel time, CO2 emissions, waiting time, and stopped
time are shown in Table 1 for the policies trained by each of the listed algorithms. For further
elaboration of different algorithms, we plotted the result of weighted waiting time with Sarsa for
the CO2 emissions, travel times, and stopped times in Fig. 2a, 2c, and 2b, respectively. The reward
is shown in Fig. 2d. As we can see, Despite the changes in the traffic flow, the profile of all traffic
elements have negligible fluctuations throughout the run, which proves that the policy networks with
weighted reward functions works relatively more efficient in different scenarios.

Table 1: Comparing Travel, waiting, stop time (Sec), and Co2 emission (g/Sec)

Metric Type Fixed time Waiting time Queue length Pressure
a2c sarsa a2c sarsa a2c sarsa

Travel not weighted 226.34 162.40 125.67 224.11 157.38 248.43 210.06
weighted 153.64 110.91 229.43 164.34 262.48 236.36

CO2 not weighted 149.76 113.48 84.11 145.45 111.26 135.85 128.35
weighted 101.29 69.98 123.43 84.96 140.19 119.79

Wait not weighted 15337 2371 1091 5365 7442 5025 15665
weighted 2117 788.06 4878 5138 6544 11109

Stop not weighted 32.70 24.24 17.55 31.62 22.08 31.95 30.16
weighted 23.14 15.57 30.27 23.80 33.76 35.77
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4 Conclusion

We propose the weighted version of pressure, waiting time and stopped time as a reward shaping
scheme to address the problem of minimizing the CO2 emissions. We also consider different vehicle
types in the intersection to prioritize the ones with inefficient fuel consumption. The new weighted
reward functions reduces travel time, waiting time, stopped time while reducing CO2 emissions. As
future direction, tuning the weights of different vehicle types would be suggested. Also, integrating
the results with a visionar system is required to fully implement this approach in real world.
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