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Motivation

● Key-factor behind climate-change is CO2 emission.

● According to the United Nation Environment Program, urban areas are 

‘responsible for 75% of global CO2 emissions’. [1]

● Considerable source of CO2 emission: District Energy System. [2]

● Supply of demand-driven thermal energy in DES can reduce CO2 emission.

● Utilities tend to over-supply to ensure the security of the energy supply.

● Consumption data acquired by smart meters in customer’s side is used only for billing 

purposes.

● Therefore it is important for the utility to accurately predict the demand of thermal 

energy based on the pattern of consumption.
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Motivation (contd.)

● Limited prediction accuracy of statistical forecasting models, viz. AR[3], ARIMA[4,5]

or, SARIMA[6] due to underlying nonlinearity.

● ANNs tend to get trapped in local optima.[7]

● LSTMs are capable to model the trend, seasonality, residual and external factors but 

training of such model requires large amount of data (not supported by many 

utilities).[8]

● SVR-based methods perform promisingly [9][10][11]but the choice of hyper-

parameters impact the performance greatly.
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Motivation (contd.)

● Contribution of our work:

● Best of our knowledge, an ML-based (PSO-kSVR) forecasting system using 

accumulated consumption data acquired from customer’s side to predict 

thermal energy consumption on the household level: First Time.

● Formulation of PSO-kSVR model to deal with the non-linearity present in data 

inherently.
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Method Overview
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Experiment and Result

● Used data:

● Accumulated heat consumption smart-meter data from household 

level in a municipality of Denmark.

● Weather data of the same municipality (external feel-like temperature).
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Experiment and Result (contd.)

● Used data:
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Experiment and Result (contd.)

● Two types of experiments have been carried out:

● Type I: Meter-specific level forecasting (for all seasons in a year).

● Type II: Societal consumption forecasting from summed up 

consumption of a group of meters (for all months in a year).

● Extracted features (selected by correlation analysis):

● Historical accumulated consumption of 1 hour lag

● External feel-like temperature of 1 hour lag.

● Train-test-validation split ratio: 14:1:1

● Qualitative (how well the predicted data fits the ground truth 

visually) and Quantitative evaluation (MAPE%, RMSE).

● The result of Type II experiment is compared with the performance 

of ARIMA model.
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● Result of Type I (Qualitative):
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● Result of Type I (Quantitative):

● Range of mean MAPE: 2.662±0.353%

● Range of RMSE: 0.1288±0.079 kWh
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● Result of Type II (Qualitative performance comparison):
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● Result of Type II (Quantitative performance comparison):

● 40 datasets comprising of 12 months historical data
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Discussion

● Clearly the PSO-kSVR method outperformed ARIMA model both 

quantitatively and qualitatively.

● Usage of accumulated consumption data leads to reduction of 

expected prediction error by reducing the noise variance in data.

● Non-linear seasonality is modeled using RBF kernel function.

● Limitation:

● MAPE% is a skewed metric.

● MAPE% has asymmetric tendency of penalization.[12]

● Problem in calculating MAPE% when ground truth = 0 (Type-I expt.)

● To deal with division by zero problem, we added the dynamic range of 

the data as an offset.

● We had to depend upon RMSE as an additional metric which is more 

reflective of the performance.
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Conclusion and Outlook

● Heat consumption prediction using PSO-kSVR.

● Hyper-parameter tuning without manual intervention.

● Promising qualitative and quantitative performance.

● Evaluation from different geographical region is needed.

● Comparison with deep-learning based techniques is required.

● An energy transport model describing individual latency of transport 

from production plant to household could be combined with the 

proposed method.

● This combination can lead to a data-driven tool towards optimal 

thermal energy supply and reduced CO2 emission.
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Thank you for your attention!
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