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1. Background
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1. Dynamic Performance Degradation with Renewables
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'/ Federal Energy Regulatory Commission

“While the three [contiguous] U.S. interconnections currently exhibit adequate
frequency response performance above their interconnection frequency
response obligations, there has been a significant decline in the frequency
response performance of the Western and Eastern Interconnections,” FERC
said. [FERC, Nov. 16]
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1. Power System Dynamics

Florida blackout : Two-thirds of the state of Florida experienced a loss of load

Florida Event Replay with FNET Data [2/26/2008]
Time: 18:09:8.1 UTC 60.0022 Hz
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1. Prediction for Power System Dynamics

Florida Event Replay with FNET Data [2/26/2008]
LU Time: 18:09:5.9 UTC 60.0012 Hz

Application goals:

O Faster real time
prediction, take interim
actions to minimize
impact
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O Better planning, so
single line faults don't
lead to load shedding
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2. Solving ODEs for Power System Dynamics

Solving high-dimensional non-linear ODEs for Power system transient dynamics

Mechanical System Electrical System
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| More than 1000 ODEs to be solved for a moderate sized power grid hing 2006.




2. Challenges in Dynamic Prediction

Florida Event Replay with FNET Data [2/26/2008]
Time: 18:09:5.9 UTC 60.0012 Hz
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2. Challenges in Dynamic Prediction

Generic machine learning approach purely learn the mapping in time-domain

- Easy to overfit in training set with majority to be stable trajectory

- Difficult to learn a smooth curvature
- Failing to capture unstable trajectory will lead to catastrophic consequences
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2. Contribution: Learning in Frequency Domain

Time domain trajectory

Fourier
Transform

Learning in the Frequency domain
: Filtering & Equivalent convolution
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3. Incorporating Parameter Variations and Qutages

Input Tensor Encoding with
Params and Actions
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4. Case studies

Northeastern Power Coordinating Council (NPCC) 48-machine,140-bus power system

Hydro Quebec

IESO

ISO-NE

< NYISO

MISO PIM
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4. Metrics

- Type 1: percentage of unstable predicted to be stable
- Type 2: : percentage of stable predicted to be unstable

TABLE 1
PERFORMANCE - ON FAULT
Metric Relative mse Error-Typel Error-Type2
Cycle after fault 0 2 4 0 2 4 0 2 4
ENO 0.0546 | 0.0084 | 0.0056 0.22 0 0 0.022 | 0.011 | 0.011
DNN 0.0712 0.0696 0.0663 1 0.714 | 0.714 0 0 0.011
TABLE 11
PERFORMANCE - POST FAULT
Metric Relative mse Error-Typel Error-Type2
Cycle after fault 10 20 30 10 20 30 10 20 30
FNO 0.0035 | 0.0026 | 0.0016 0 0 0 0.011 | 0.011 0
DNN 0.0710 0.0324 0.0193 0429 | 0 | 0.143 0.022 | 0.022 | 0.011

One cycle is 1/60=0.017 seconds
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Thank you!

L Online version of this work can be found in https://arxiv.org/abs/2111.01103

O Feel free to contact me at wenqicui@uw.edu
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