

Predicting Power System Dynamics and Transients: A Frequency Domain Approach

Wenqi Cui¹, Weiwei Yang² and Baosen Zhang¹

¹ Department of Electrical and Computer Engineering, University of Washington

² Microsoft Research

1. Background

1. Dynamic Performance Degradation with Renewables

1. Power System Dynamics

1. Prediction for Power System Dynamics

Application goals:

- □ Faster real time prediction, take interim actions to minimize impact
- Better planning, so single line faults don't lead to load shedding

2. Solving ODEs for Power System Dynamics

Solving high-dimensional non-linear ODEs for Power system transient dynamics

More than 1000 ODEs to be solved for a moderate sized power grid

2. Challenges in Dynamic Prediction

2. Challenges in Dynamic Prediction

Generic machine learning approach purely learn the mapping in time-domain

- Easy to overfit in training set with majority to be stable trajectory
- Difficult to learn a smooth curvature
- Failing to capture unstable trajectory will lead to catastrophic consequences

2. Contribution: Learning in Frequency Domain

3. Incorporating Parameter Variations and Outages

Input Tensor Encoding with Params and Actions

Fault-Clear Action Encoder

Equivalent convolution in Frequency domain

 $\times W_{\phi}$

4. Case studies

Northeastern Power Coordinating Council (NPCC) 48-machine,140-bus power system

4. Metrics

- Type 1: percentage of unstable predicted to be stable
- Type 2: : percentage of stable predicted to be unstable

TABLE I PERFORMANCE - ON FAULT

Metric	Relative mse			Error-Type1			Error-Type2		
Cycle after fault	0	2	4	0	2	4	0	2	4
FNO	0.0546	0.0084	0.0056	0.22	0	0	0.022	0.011	0.011
DNN	0.0712	0.0696	0.0663	1	0.714	0.714	0	0	0.011

TABLE II PERFORMANCE - POST FAULT

Metric	Relative mse			Error-Type1			Error-Type2		
Cycle after fault	10	20	30	10	20	30	10	20	30
FNO	0.0035	0.0026	0.0016	0	0	0	0.011	0.011	0
DNN	0.0710	0.0324	0.0193	0.429	0	0.143	0.022	0.022	0.011

Thank you!

- ☐ Online version of this work can be found in https://arxiv.org/abs/2111.01103
- ☐ Feel free to contact me at wenqicui@uw.edu