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Abstract

Global warming leads to the increase in frequency and intensity of climate extremes
that cause tremendous loss of lives and property. Accurate long-range climate
prediction allows more time for preparation and disaster risk management for such
extreme events. Although machine learning approaches have shown promising
results in long-range climate forecasting, the associated model uncertainties may
reduce their reliability. To address this issue, we propose a late fusion approach
that systematically combines the predictions from multiple models to reduce the
expected errors of the fused results. We also propose a network architecture
with the novel denormalization layer to gain the benefits of data normalization
without actually normalizing the data. The experimental results on long-range 2m
temperature forecasting show that the framework outperforms the 30-year climate
normals, and the accuracy can be improved by increasing the number of models.

1 Introduction

Global warming leads to the increase in frequency and intensity of climate extremes [7]. High-impact
extreme events such as heat waves, cold fronts, floods, droughts, and tropical cyclones can result in
tremendous loss of lives and property, and accurate predictions of such events benefit multiple sectors
including water, energy, health, agriculture, and disaster risk reduction [9]. The longer the range of
an accurate prediction, the more the time for proper preparation and response. Therefore, accurate
long-range forecasting of the key climate variables such as precipitation and temperature is valuable.

Numerical models for weather and climate prediction have a long history of producing the most
accurate seasonal and multi-annual climate forecasts, but they come with the cost of large and
expensive physics-based simulations (e.g. [6, 1]). With the recent advancements in machine learning
such as deep learning, the use of machine learning for climate forecasting has become more popular
[3, 14, 12, 11], and some machine learning approaches can outperform numerical models in certain
tasks [3]. Nevertheless, depending on the machine learning algorithm and data availability, different
degrees of model uncertainties exist. In deep learning, models trained with the same data and
hyperparameters are usually not identical. This is caused by the random processes in training such
as weight initialization and data shuffling. Such model uncertainties can be more prominent for
climate forecasting given the limited data, and this can reduce the reliability of the models especially
with large lead times. Even though reducing the randomness in training (e.g., using fixed weight
initialization) may reduce the model uncertainties, the chance of getting better models is also reduced.
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Figure 1: Network architecture for 2m temperature forecasting. BN and FC represent batch normal-
ization and fully connected layers, respectively. The number of input channels is the input horizon,
and the number of output channels is the number of predictand locations.

In this paper, our goal is to reduce model uncertainties and improve accuracy in seasonal climate
forecasting. By modifying the late fusion approach in [13] to adapt to deep learning regression,
predictions from different models trained with identical hyperparameters are systematically combined
to reduce the expected errors in the fused results. We demonstrate its applicability on long-range 2m
temperature forecasting. Furthermore, we propose a novel denormalization layer which allows us to
gain the benefits of data normalization without actually normalizing the data.

2 Methodology

2.1 Network Architecture with Denormalization

The proposed network architecture is shown in Fig. 1. Given a multi-channel input tensor formed by
stacking the input maps of 2m temperature spanning a fixed input horizon, the network predicts the
2m temperatures at multiple locations with a fixed lead time. The network comprises six dense blocks
[5], each with a convolutional layer and a growth rate of 20. A batch normalization layer is used
right after the input layer for data normalization. Furthermore, although we found that normalizing
the predictands allows the use of simpler architectures with better accuracy, the resulting model can
only provide normalized predictions and postprocessing is required to recover the original values. To
address this issue, we introduce a denormalization layer after the final fully connected layer to obtain:

xo(c) = xi(c)σ(c) +m(c) (1)
with c the channel index, and xo, xi the output and input features, respectively. σ and m are the
standard deviation and mean value computed from the training data. Using this denormalization
layer, the final fully connected layer only needs to predict normalized values, thus removing the
need of predictand normalization. With this architecture, data normalization in training and forecast
denormalization in inference are unnecessary.

2.2 Late Fusion

We modified the late fusion approach in [13] for regression. The method combines predictions from
multiple models using weighted average. To compute the weights, the pairwise correlations between
different models in terms of how likely they will make correlated errors are estimated, which are
then used to compute the weights that reduce the expected error in the fused result. Let f j(si) be
the prediction by the jth model for input si and t(si) the true value. The late fusion result for si is∑

j w
jf j(si) with

∑
j w

j = 1. The pairwise correlation between model j1 and j2 is:

M [j1, j2] =
∑
i

[
f j1(si)− t(si)

] [
f j2(si)− t(si)

]
(2)

Then the weights are computed by:

w = argmin
w

wTMw =
M−11K

1T
KM−11K

(3)

with K the number of models and 1K a vector with K ones. M and w are computed using the
validation data. This procedure is applied on each output channel.
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Table 1: Locations at low or high latitudes where the 2m temperatures are predicted.

Low Honolulu (21.3◦N, 157.9◦W), Panama City (9.0◦N, 79.5◦W), Singapore (1.4◦N, 103.8◦E), Mid Pacific Ocean (4.4◦N, 167.7◦W)

High Moscow (55.8◦N, 37.6◦E), London (51.5◦N, 0.1◦W), Christchurch (43.5◦S, 172.6◦E), Perth (32.0◦S,115.9◦E)
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Figure 2: Left two: examples of forecasts at different lead times, with the green circle highlighting
the hottest year (2016) on record. Right: RMSESS of models trained with identical hyperparameters
(dashed lines) compared with the late fusion and the best model frameworks with 20 models per lead
time (solid lines). Top: Singapore. Bottom: London.

2.3 Training Strategy

The 2m temperature maps of the ERA5 reanalysis data [4] were partitioned for training (1979 – 2007),
validation (2008 – 2011), and testing (2012 – 2020). Each data map was resampled from the original
spatial resolution of 0.25◦ × 0.25◦ to 1◦ × 1◦. The data were also aggregated over time from hourly
to weekly. An input horizon of six weeks was used with 10 forecast lead times (5 to 50 weeks with a
stride of 5 weeks). Each model was trained for 200 epochs with the batch size of 32. The Nadam
optimizer [2] was used with the cosine annealing learning rate scheduler [8], with the minimum and
maximum learning rates as 10−4 and 10−2, respectively. The mean absolute error was used as the
loss function.

3 Experiments

To study model uncertainties, we trained 20 models with identical hyperparameters per lead time
(i.e., 200 models in total). Each model was used to predict temperatures from four low-latitude and
four high-latitude locations (Table 1). Two frameworks were compared:

• Late fusion: the framework that combines the predictions of different models at each lead time.

• Best model: at each lead time, the model with the smallest root mean square error (RMSE) on the
validation data was chosen to provide the predictions.

For evaluation, the RMSE skill score (RMSESS ∈ [−∞, 1]) that compares between the model
forecasts and the 30-year climate normals was used:

RMSESS = 1− RMSEmodel

RMSEclim
(4)

with RMSEmodel computed between the forecasts and the true values, and RMSEclim computed
between the 30-year climate normals and the true values. A 30-year climate normal is the 30-year
average of a predictand at a given time point, which is a generally accepted benchmark for comparison.
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Figure 3: Comparison between the late fusion and the best model frameworks. The y-axis shows the
average RMSESS over the lead times. Left to right: low-latitude and high-latitude locations.
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Figure 4: Performance of the late fusion and best model frameworks with 20 models per lead time.

3.1 Results

Fig. 2 (left) shows examples of forecasts on the testing data before applying the frameworks. In
Singapore, with a lead time of five weeks, the forecasts closely followed the ground truth and
outperformed the climate normals especially in 2016. In fact, 2016 was the hottest year on record
[10] and the proposed model was able to forecast this anomalous event. However, as expected, the
accuracy decreased with the increase of the lead time. In London, both the forecasts and the climate
normals were very similar to the ground truth regardless of the lead time, probably because of the
larger range in temperature.

In the RMSESS plot of Singapore in Fig. 2 (right), the mostly positive scores indicate that the forecasts
outperformed the climate normals, though the scores decreased when the lead time increased. In
London, the forecasts and climate normals were very similar, and the discrepancies among models
were less obvious. Both plots show that although identical hyperparameters were used in training, the
models performed differently especially with large lead times. By combining these models, the late
fusion framework outperformed the best model framework and had the best overall results.

Fig. 3 shows comparison between the late fusion and the best model frameworks. The late fusion
framework outperformed the best model framework in general. When the number of models per
lead time increased, the late fusion framework improved smoothly in most locations and gradually
converged with around 16 models. In contrast, the best model framework performed less well
and may not benefit from a larger number of models. This is because the late fusion framework
systematically reduced the expected errors from all models, while the best model framework only
chose a single model that had the overall minimal RMSE on the validation data. Fig. 4 compares
the two frameworks with 20 models per lead time. The late fusion framework outperformed the best
model framework at most locations.

4 Conclusion

The results show that the models trained by the proposed architecture and training strategy can
forecast large deviations from climate normals that attribute to climate change. Nevertheless, the
models trained with identical hyperparameters may perform differently especially with large lead
times. Using the late fusion approach, predictions from different models are combined systematically
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to provide forecasts with reduced expected errors, and the results can be better than using a single
model with the least validation error. As late fusion also improves forecasts with large lead times
which associate with large model uncertainties, it is valuable for long-range climate forecasting.
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