

Motivation

- Wind has high maintenance cost compared to fossil fuels
- Blade damages account for the majority of failures, hence the high maintenance cost

If we can identify damages on blades early, wind can be competitive with fossil fuels on a market level

Motivation

- Miss fewer damages Lower time spent on QC1

Inspection Data

Where is the damage?

Annotation

- Attractive candidate for detection
- Masks (green)
- Bounding box (red)

Methods

Model:

Mask RCNN-based

Data:

- 250000 inspection pictures
- 370000 annotations

Training:

• 80% train, 10% validation, 10% test

Hardware:

EC2 instance with NVIDIA Tesla V100

Training results

- Pixel-wise IOU is a poor metric
- Define damage recall and damage precision
 - o Ground truth overlaps with one or more predictions by a certain threshold
 - o Damage precision/recall at .4 and .93
- Predictions are clues

QC Process (cont'd)

Results

Job No.	No. of annotations	No. of clues converted	% of clues converted
1	183	178	97.3%
2	192	184	95.8%
3	124	124	100%
4	192	184	95.8%
5	192	184	95.8%

Table 1: Percentage of the clues generated by Blue that were converted into actual annotations

Results

Clues Used (yes/no)	Average QC1 minutes (per picture)	Average QC2 minutes (per picture)	Average number of missed damages (per inspection)
no	0.212	0.090	0.0080
yes	0.205	0.086	0.0072

Table 2: Average time spent on QCs and number of misses in production

Conclusions and Future Work

Observations:

- Model can provide real world values even with poor ML metrics
- Scaling the model is easier than scaling a team of human analysts

Future Work:

- Train on segmented pictures
- Real time online inference

We're here to make renewables the most efficient energy source in the world

Blade **Inspections**

Fully automated robotic inspections

Data turnaround time

15 minutes downtime (for a 100m rotor)

89,000+ inspections strong

Safe, precise, high quality images

View, annotate & track fleet data in one place

Prioritize repairs & inspections

Create, manage & track work orders

Consolidate historic inspection data from any vendor

Store & review post-campaign

Blade Engineering **Expertise**

Blade asset decision making

Digitization & analysis of data

O&M consultation & advisory

Process analysis & improvements

documentation

312 South Ashley St. Ann Arbor, MI 48104 +1 734 413 7346

Meeuwenlann 100 1021JL Amsterdam +1 734 413 7346

info@skyspecs.com akshay.iyer@skyspecs.com linh.nguyen@skyspecs.com shweta.khushu@skyspecs.com

