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Abstract

Machine learning has the potential to automate the analysis of vast amounts of
raw geophysical data, allowing scientists to monitor changes in key aspects of
our climate such as cloud cover in real-time and at fine spatiotemporal scales.
However, the lack of large labeled training datasets poses a significant barrier for
effectively applying machine learning to these applications. Transfer learning,
which involves first pretraining a neural network on an auxiliary “source” dataset
and then finetuning on the “target” dataset, has been shown to improve accuracy for
machine learning models trained on small datasets. Across prior work on machine
learning for geophysical imaging, different choices are made about what data to
pretrain on, and the impact of these choices on model performance is unclear. To
address this, we systematically explore various settings of transfer learning for
cloud classification, cloud segmentation, and aurora classification. We pretrain on
different source datasets, including the large ImageNet dataset as well as smaller
geophysical datasets that are more similar to the target datasets. We also experiment
with multiple transfer learning steps where we pretrain on more than one source
dataset. Despite the smaller source datasets’ similarity to the target datasets, we find
that pretraining on the large, general-purpose ImageNet dataset yields significantly
better results across all of our experiments. Transfer learning is especially effective
for smaller target datasets, and in these cases, using multiple source datasets can
give a marginal added benefit.

1 Introduction

As raw geophysical data is collected in ever-increasing volumes, there is a need for automated tools
to extract useful information to better understand and monitor climate change. Machine learning
has the potential to help us analyze climate data accurately, quickly, and at finer spatiotemporal
scales than standard methods [2, 3]. For example, there has been significant recent interest in using
computer vision models to classify cloud types from images [11, 27, 28]. The presence of different
types of clouds has important implications for climate change because clouds have diverse impacts on
radiative forcing: certain cloud structures enhance warming by trapping heat, while others mitigate
warming by reflecting heat away [4]. With complex feedbacks between cloud characteristics and
warming surface temperatures, clouds play a vital role in the sensitivity of the climate to changes in
CO2 concentration [6, 16, 26]. At the same time, the precise impact of clouds on climate change is
difficult to model [27]; the sixth IPCC assessment report on climate change states “clouds remain
the largest contribution to overall uncertainty in climate feedbacks” [21]. Therefore, there is great
utility in applying machine learning to automatically classify cloud images, allowing scientists to
analyze clouds at finer spatiotemporal scales and continuously monitor changes in cloud cover and its
impacts on the climate.

The success of machine learning depends on large labeled datasets such as the ImageNet dataset
which contains over a million images scraped from the internet [8]. While raw geophysical images
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are plentiful from ground-based and remote sensors, there is a relative dearth of labeled images:
many academic datasets contain only hundreds or thousands of labeled images [3, 9, 18, 28, 30]. In
situations where labeled data is limited, transfer learning can provide a simple and effective method
of training accurate machine learning models [15, 17]. This method involves first pretraining a
model on an auxiliary dataset known as the “source dataset.” Then the model is further trained
on the “target dataset” of interest, a process known as finetuning. This allows us to transfer the
patterns learned in the source dataset to augment the training of the target dataset. Transfer learning
has been successfully used to train accurate machine learning models from limited labeled data
for applications ranging from cloud classification to weather forecasting to land use classification
to prediction of El Niño-Southern Oscillation events [3, 13, 20, 24]. However, the use of transfer
learning varies widely across machine learning models for geophysical applications. Some models
are not pretrained on a source dataset [11, 18], some are pretrained on the standard machine learning
ImageNet dataset [7, 20, 30], and others are pretrained on task-specific source datasets such as other
geophysical imaging datasets or simulated data [13, 24, 28].

We systematically evaluate how the choice of source dataset impacts transfer learning across three
geophysical tasks: cloud classification, cloud segmentation, and aurora classification. We compare
the accuracies of models with no pretraining, models pretrained on the general-purpose ImageNet
dataset, and models pretrained on task-specific geophysical datasets (e.g. other cloud classification
datasets). Results are varied across prior work on evaluating pretraining in other domains from
medical imaging to law texts: while pretraining on general-purpose datasets is common, sometimes
similar results can be obtained with no pretraining or improvements can be gained by pretraining on
domain-specific datasets [1, 19, 23, 29].

In the context of geophysical imaging datasets, we find that transfer learning can significantly improve
the performance of the models, up to an increase in test accuracy of 10 percentage points. Across
the board, pretraining on the ImageNet dataset provides more added benefit than pretraining on
smaller but more related task-specific source datasets. This finding indicates that the utility of transfer
learning is to some extent task-agnostic; the benefit of pretraining on a dataset the size of ImageNet
outweighs the fact that the images are of everyday objects rather than of clouds or auroras. We further
experiment with multiple steps of transfer learning where we pretrain on multiple source datasets. In
general this yields little to no additional benefit over simply pretraining on a single source dataset,
but there are a few instances where this method provides small increases in accuracy. In all cases, the
benefits of transfer learning are most apparent for smaller target datasets. We hope this work will give
scientists insight into the transfer learning pipelines that will get the most out of small geophysical
imaging datasets and thus aid in automating analysis and monitoring of our climate.

2 Methods

We focus on three geophysical imaging tasks: cloud classification, cloud segmentation, and aurora
classification. Machine learning models for cloud classification and segmentation in particular have
great potential for improving our understanding of the climate and of climate change. As general
image classification and image segmentation have been intensely studied in computer vision, we
make use of existing machine learning models and large benchmark datasets. For each task, we use
several “target” datasets for which we want to develop accurate machine learning models. To better
understand the utility of transfer learning for geophysical imaging tasks, we evaluate the accuracy of
machine learning models pretrained on a variety of “source” datasets. The source datasets include
the other target datasets for the same task (e.g. we pretrain on one cloud classification dataset and
finetune on another cloud classification dataset) as well as image processing datasets from other fields.
In addition, for each task we experiment with multiple transfer learning steps in which we pretrain
on multiple source datasets in sequence (e.g. pretrain on ImageNet, then pretrain on a source cloud
dataset, then finetune the model on the target cloud dataset). Further details on the tasks and datasets
are given later in this section and in Table 2 (Appendix A).

We implement all of our transfer learning experiments in Python using the PyTorch framework [22].
Each experiment is averaged over 10 trials, and we report one standard deviation. For all of our
classification tasks, we use the ResNet-18 model architecture with a final softmax layer [14]. For all
of our segmentation tasks, we use the U-Net architecture with a final softmax layer [25]. The models
are trained using stochastic gradient descent with momentum. No layers are frozen: all weights are
updated in the finetuning stage.
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(a) CCSN (cirrocumulus, altocumulus,
nimbostratus, contrails)

(b) SWIMCAT (thick dark clouds, patterned
clouds, veil clouds, thick white clouds)

Figure 1: Sample Cloud Classification Images

Target Datasets We test two target datasets for the task of cloud classification. CCSN [28] contains
2,543 images of 11 classes of clouds: cirrus, cirrostratus, cirrocumulus, altocumulus, altostratus,
cumulus, cumulonimbus, nimbostratus, stratocumulus, stratus, and contrails. SWIMCAT [9] contains
784 images collected by an all-sky camera in Singapore of 5 classes of clouds: clear sky, patterned
clouds, thick dark clouds, thick white clouds, and veil clouds.

We test two target datasets for the task of cloud segmentation. SWIMSEG [10] contains 1,013 images
of clouds with corresponding binary segmentation maps indicating which pixels represent clouds and
which do not. SWINSEG [12] contains 115 nighttime images of clouds with corresponding binary
segmentation maps. Accuracy for cloud segmentation refers to pixel-wise accuracy.

We test two target datasets for the task of aurora classification. The Kiruna dataset [18] contains 3,846
images collected by an all-sky camera near Kiruna, Sweden of 7 classes of auroras: breakup, colored,
arcs, discrete, patchy, edge, and faint. The Yellow River 2 (YR2) dataset [30] contains 8,001 images
collected by an all-sky camera at the Yellow River Station of 4 classes of auroras: arc, radiation
corona, hot spot corona, and drapery corona.

Source Datasets For each target cloud classification dataset, we pretrain on the other cloud clas-
sification target dataset, along with ImageNet, a commonly used image classification dataset with
over a million images of 1,000 classes ranging from animals to everyday objects. For example, when
testing CCSN as the target dataset, we evaluate the performance of no transfer learning, transferring
from ImageNet, and transferring from SWIMCAT. For each target cloud segmentation dataset, we
try pretraining on the other cloud segmentation target dataset, as well as a third cloud segmentation
dataset called SWINySEG [11] which contains 6,768 daytime and nighttime images of clouds with
corresponding binary segmentation maps. The U-Net image segmentation model was originally
designed for medical imaging applications, so we also experiment with pretraining on the LGG
dataset, a brain MRI segmentation dataset with 7,858 images [5]. For each target aurora classification
dataset, we pretrain on the other aurora classification target dataset, along with ImageNet. We also
pretrain on the Yellow River 1 (YR1) dataset [30] which contains 1,200 images with the same classes
as YR2. We do not use YR1 as a target dataset because even with no pretraining, ResNet-18 achieves
100% test accuracy, so there is no room for improvement.

3 Results

Source Dataset Target Dataset Train Accuracy (%) Test Accuracy (%)

None CCSN 51.00(±1.88) 32.87(±1.28)
ImageNet CCSN 92.59(±0.36) 40.33(±1.48)
SWIMCAT CCSN 67.50(±2.82) 33.71(±0.96)
ImageNet→ SWIMCAT CCSN 93.21(±0.44) 38.34(±2.23)
None SWIMCAT 96.17(±0.89) 87.12(±2.12)
ImageNet SWIMCAT 98.18(±0.65) 95.32(±1.67)
CCSN SWIMCAT 96.74(±0.92) 88.33(±3.77)
ImageNet→ CCSN SWIMCAT 98.64(±0.28) 97.63(±0.95)

Table 1: Cloud Classification Results (best result for each target dataset is bolded and one
standard deviation is displayed in parentheses).

Varying Source Datasets Table 1 shows very pronounced differences in performance between
different source datasets for cloud classification. The CCSN dataset has significant background
information (see Figure 1), making it difficult for machine learning models to identify relevant
features and resulting in lower test accuracy with the model potentially overfitting to the background.
For both CCSN and SWIMCAT as target datasets, pretraining on ImageNet significantly outperforms
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Figure 2: Comparison of source datasets for Kiruna with varying target dataset size. Shading indicates one
standard deviation.

pretraining on the other cloud classification dataset and increases accuracy by more than 7% over
no transfer learning in both cases. Interestingly, pretraining on ImageNet and CCSN and then
finetuning on SWIMCAT adds an additional 2% improvement over just pretraining on ImageNet.
While pretraining on multiple source datasets does not always yield an added benefit, it can modestly
improve accuracy for small target datasets such as SWIMCAT.

As shown in Table 3 (in Appendix B), even though the larger SWINySEG dataset achieves a relatively
low accuracy of 59.8%, it is still the most effective source dataset for cloud segmentation (ImageNet
is not applicable in this case as it is a classification dataset). For both SWIMSEG and SWINSEG
as target datasets, pretraining on SWINySEG increases accuracy by approximately 1.5%. Larger
source datasets are once again the most effective, even if the model did not originally achieve high
test accuracy on the source dataset.

For aurora classification (see Table 4 in Appendix C), ImageNet consistently outperforms smaller,
domain-specific source datasets. However, with aurora datasets, we achieve relatively good perfor-
mance even without transfer learning (> 90%) and the target datasets are relatively large compared
to those for cloud classification and segmentation, so the advantage of transfer learning is not as
pronounced. For target dataset Kiruna, pretraining on ImageNet increases accuracy by 1.4% over no
pretraining. For target dataset YR2, the accuracy increases by 3%. For both target datasets, multiple
transfer learning steps lead to worse performance than simply pretraining on ImageNet.

Varying Target Dataset Size In Figure 2, we show the results of varying the size of target dataset
by randomly subsampling training sets of sizes 3000, 1500, 750, and 250 from the Kiruna dataset.
For each of these training set sizes, we compare no transfer learning to pretraining on three different
source datasets: ImageNet, YR2, and ImageNet → YR2. There is a consistent order in performance
across the source datasets with ImageNet and ImageNet → YR2 performing similarly, followed by
YR2, and then None. The differences become much more pronounced as the training set shrinks. For
example, with a training set size of 3000, there is only a 1% difference in test accuracy between the
best and worst performing source dataset (ImageNet and YR2, respectively). However, when using
a training set of size 250, this difference in test accuracy grows to 6.6%, with ImageNet achieving
94.1% accuracy and YR2 achieving only 87.5% accuracy. This supports the idea that choosing the
right source dataset is especially important for small target datasets.

4 Conclusion

With huge volumes of geophysical imaging data and a relative dearth of labeled images, transfer
learning is a useful tool to effectively apply deep learning to analysis and monitoring of our climate
at a more granular scale. Choosing the right (often the largest) source dataset for pretraining has a
significant impact on the utility of transfer learning, especially for smaller target datasets. Next steps
might include (1) evaluating if transfer learning behaves similarly for modalities other than all-sky
images such as remote sensing or non-image data; and (2) exploring how to incorporate transfer
learning into hybrid pipelines that combine deep learning with physics-based models.
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A Dataset Information

Name Subject Task Training Set Size Test Set Size

ImageNet Everyday Objects Classification 1,200,000 150,000
CCSN Clouds Classification 2,035 508
SWIMCAT Clouds Classification 628 156
LGG Brain MRIs Segmentation 6,680 1,178
SWIMSEG Clouds Segmentation 811 202
SWINSEG Clouds Segmentation 92 23
SWINySEG Clouds Segmentation 5,415 1,353
Kiruna Auroras Classification 3,000 846
YR1 Auroras Classification 1,080 120
YR2 Auroras Classification 7,201 800

Table 2: Datasets

B Cloud Segmentation Results

Source Dataset Target Dataset Train Accuracy (%) Test Accuracy (%)

None SWIMSEG 88.63(±0.00) 84.80(±0.01)
LGG SWIMSEG 88.96(±0.12) 83.29(±0.44)
SWINSEG SWIMSEG 88.63(±0.01) 84.82(±0.05)
SWINySEG SWIMSEG 93.69(±0.01) 86.60(±0.05)
LGG→ SWINSEG SWIMSEG 89.10(±0.09) 84.33(±0.23)
LGG→ SWINySEG SWIMSEG 91.43(±0.00) 85.60(±0.01)
None SWINSEG 84.30(±0.00) 85.80(±0.00)
LGG SWINSEG 85.81(±0.02) 87.00(±0.05)
SWIMSEG SWINSEG 85.34(±0.00) 86.16(±0.00)
SWINySEG SWINSEG 90.38(±0.00) 87.29(±0.02)
LGG→ SWIMSEG SWINSEG 86.73(±0.00) 86.62(±0.01)
LGG→ SWINySEG SWINSEG 88.15(±0.00) 87.48(±0.00)
None SWINySEG 91.40(±0.13) 59.76(±2.97)
LGG SWINySEG 90.77(±0.07) 65.68(±8.38)

Table 3: Cloud Segmentation Results (best result for each target dataset is bolded and one
standard deviation is displayed in parentheses).

C Aurora Classification Results

Source Dataset Target Dataset Train Accuracy (%) Test Accuracy (%)

None Kiruna 98.73(±0.26) 94.85(±0.37)
ImageNet Kiruna 99.53(±0.12) 96.24(±0.49)
YR1 Kiruna 99.03(±0.13) 94.07(±0.46)
YR2 Kiruna 99.48(±0.08) 95.24(±0.21)
ImageNet→ YR2 Kiruna 99.82(±0.09) 95.66(±0.48)
None YR2 99.82(±0.05) 90.83(±0.65)
ImageNet YR2 99.86(±0.05) 93.85(±0.55)
Kiruna YR2 99.83(±0.06) 90.76(±0.7)
YR1 YR2 99.81(±0.07) 90.68(±0.5)
ImageNet→ Kiruna YR2 99.90(±0.04) 93.81(±0.48)

Table 4: Aurora Classification Results (best result for each target dataset is bolded and
one standard deviation is displayed in parentheses).
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