Identifying the atmospheric drivers of drought and heat using a smoothed deep learning approach

Magdalena Mittermeier, Maximilian Weigert, David Rügamer Ludwig-Maximilians-Universität München

Tackling Climate Change with Machine Learning workshop at NeurIPS 2021

14.12.2021

Motivation

Figure 1: Circulation pattern with high pressure ridge over Europe

- Several extreme events of heat and drought in recent European summers (e.g., 2003, 2010, 2018)
- Atmospheric drivers of drought and heat: six specific circulation patterns with anticyclonic features
- ⇒ Research question: how does climate change alter the occurrence of these atmospheric drivers?
- ⇒ Classification of atmospheric drivers in large ensembles of climate models

Data

Training data:

- classifications for 1900-2010; daily (total: 40500 observations)
- two channels: sea level pressure and geopotential height at 500 hPa

Challenges:

- noisy labels (subjectiveness)
- undefined transition days
- fixed dwell time (>= 3 days)
- imbalanced class distribution

Figure 2: Six anticyclonic circulation patterns at sea level pressure

Smoothed deep learning approach

Adaptation for data-specific characteristics:

- Error weighting
- Label smoothing for first and last day of a circulation pattern
- Transition-smoothing step:

The final predicted class \tilde{y}_t at time point t is given by

$$\tilde{y}_t = \begin{cases} \hat{y}_{t-1} & \text{if } \hat{y}_{t-1} = \hat{y}_{t+1} \text{ (Neighborhood Consistency),} \\ \hat{y}_{t-1} & \text{if } \hat{y}_t = \hat{y}_{t+1} \land \hat{y}_{t-1} = \hat{y}_{t+2} \text{ (2-days Consistency),} \\ m(\hat{\pi}_{t-1}, \hat{\pi}_{t+1}) & \text{if } \hat{y}_t \neq \hat{y}_{t+1} \land \hat{y}_{t-1} \neq \hat{y}_{t+1} \text{ (Transition Membership),} \\ m(\hat{\pi}_{t-1}, \hat{\pi}_{t+2}) & \text{else,} \end{cases}$$

where $\hat{\pi}_t$ denotes the predicted probability vector at time t, $\hat{y}_t = \hat{\pi}_t$ the predicted class prior to the transition-smoothing step, and

$$m(\pi_s, \pi_t) = {\{\pi_{u^*}\}}$$
 with $u^* =_{u \in {\{s,t\}}} {\{\max(\pi_u)\}}$.

Ablation Study

Final network:

- Accuracy: 0.60
- Macro F1-score: 0.38
- best performance for classes HNA and BM

Smoothed Approach:

- Transition-smoothing is key to performance gains (+ 4% for accuracy, + 2% for accuracy)
- low impact of label-smoothing

	BM	HNA	HFA	NEA	SEA	HNFA	Residual	Accuracy	F1-score
Proposed network	0.41	0.36	0.28	0.39	0.26	0.26	0.74	0.60	0.38
No LS	0.41	0.36	0.28	0.40	0.26	0.26	0.74	0.60	0.39
No TS	0.39	0.33	0.25	0.36	0.23	0.23	0.70	0.56	0.36
No LS and TS	0.39	0.33	0.25	0.37	0.23	0.23	0.70	0.56	0.36
	No LS No TS	Proposed network 0.41 No LS 0.41 No TS 0.39	Proposed network 0.41 0.36 No LS 0.41 0.36 No TS 0.39 0.33	Proposed network 0.41 0.36 0.28 No LS 0.41 0.36 0.28 No TS 0.39 0.33 0.25	Proposed network 0.41 0.36 0.28 0.39 No LS 0.41 0.36 0.28 0.40 No TS 0.39 0.33 0.25 0.36	Proposed network 0.41 0.36 0.28 0.39 0.26 No LS 0.41 0.36 0.28 0.40 0.26 No TS 0.39 0.33 0.25 0.36 0.23	Proposed network 0.41 0.36 0.28 0.39 0.26 0.26 No LS 0.41 0.36 0.28 0.40 0.26 0.26 No TS 0.39 0.33 0.25 0.36 0.23 0.23	Proposed network 0.41 0.36 0.28 0.39 0.26 0.26 0.74 No LS 0.41 0.36 0.28 0.40 0.26 0.26 0.74 No TS 0.39 0.33 0.25 0.36 0.23 0.23 0.70	Proposed network 0.41 0.36 0.28 0.39 0.26 0.26 0.74 0.60 No LS 0.41 0.36 0.28 0.40 0.26 0.26 0.74 0.60 No TS 0.39 0.33 0.25 0.36 0.23 0.23 0.70 0.56

Conclusion and Outlook

Results:

- high potential of deep-learning based approach for circulation type classification
- adaptation for data-specific characteristics necessary

Contribution:

 possibility of identification of drivers of heat and drought extremes in large ensembles of climate models

Outlook:

- Conv-LSTM to take temporal dependence structure into account
- Hidden Markov model