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« Atlantic Multidecadal Variability (AMV)

« ~60-70 year fluctuation in sea surface temperature
(SST) anomalies over the North Atlantic

* Relevance to Climate Change
« AMV has been linked to variation in:
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Problem and Background

* The Question: Can we predict the AMV state ahead of time (0-

year to 24-year lead time)?
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Use Machine Learning to predict
the AMV state

Community Earth System Model 1.1

40-member Large Ensemble Simulations
40 x (1920-2005) = 3,440 Years



Prediction Objective

: Use snapshots of anomalous sea surface temperature, salinity, and
atmospheric pressure, to predict AMV N-years ahead (N=0, 3, ..., 24)

Temperature (SST, °C) Success Metric: Accuracy of Predictions (by each class)

AMYV Index Distribution by Year,
0=0.3625°C

Salinity (SSS, PSU)
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300 Samples from each class, 80/20 Train/Test Split



Network Architectures

Successful in
ENSO forecasting
(Ham et a. 2019)

Evaluate Transfer Learning
Performance for
Pretrained Networks
(Imagenet and FractalDB)

Examine other ML

architectures and
Test AutoML
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Overall AMV Prediction

Total Prediction Accuracy (All Classes)
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* AutoML has the best
performance over simple
CNN, resnet50 and
FractalDB.
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Prediction skills for different AMV states
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* Machine learning based models are better at predicting the
, which is of greater societal benetfits.

 AutoML still outperforms all the other machine learning models for
predicting extreme AMV states.



Conclusions and future steps

* Predicting AMV, especially for extreme states, are of great societal benefits, and
all the machine learning based models outperform baseline persistence
forecast.

* AutoML, with minimal user-end tuning, has the best performance. This provides
potential for stakeholders or local climate centers to use such method without
many technical barriers.

(b) Layerwise Relevance

 For the next steps, we will focus on the
interpretability:
«  Which specific regions in North Atlantic contributes the
most to the prediction of extreme AMV states?
 Natural variability and anthropogenic climate change, R o e el

which component contributes the most to the :
0.00 0.75

predictability? From Toms et al. 2020




