Predicting Atlantic Multidecadal Variability

Glenn Liu^{1,2,3}, Peidong Wang¹, Matthew Beveridge¹, Young-Oh Kwon², Iddo Drori¹

¹ Massachusetts Institute of Technology ² Woods Hole Oceanographic Institution

³.MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering

Atlantic Multidecadal Variability (AMV) and Climate Change

Atlantic Multidecadal Variability (AMV)

• ~60-70 year fluctuation in sea surface temperature (SST) anomalies over the North Atlantic

Relevance to Climate Change

- AMV has been linked to variation in:
 - Atlantic hurricane activity
 - Extreme weather events
 - Fisheries/ Ecosystem Regime Shifts
- Quantify natural climate variability and response to anthropogenic warming/change

HadISST AMV Spatial Pattern ($^{\circ}C/1\sigma_{AMV}$) 1870-2018

Problem and Background

• The Question: Can we predict the AMV state ahead of time (0-year to 24-year lead time)?

Previous Work and Challenges

Existing Physical Prediction Models:

- Computationally Intensive
- Sensitive to Initial Conditions

Insufficient Data in Observations 1870-2021 (~150 years)

Prediction Objective

• Objective: Use snapshots of anomalous sea surface temperature, salinity, and atmospheric pressure, to predict AMV N-years ahead (N=0, 3, ..., 24)

a) Convolutional neural network

Network Architectures

Successful in ENSO forecasting (Ham et a. 2019)

b) Residual neural network

Evaluate Transfer Learning
Performance for
Pretrained Networks
(Imagenet and FractalDB)

Baseline: Persistence Forecast i.e. Current AMV state will be the future AMV State

Positive Neutral Negative

c) AutoML

Examine other ML architectures and Test AutoML

Overall AMV Prediction

- All the machine learning based models outperform baseline persistence forecast at almost every lead time.
- AutoML has the best performance over simple CNN, resnet50 and FractaIDB.

Prediction skills for different AMV states

- Machine learning based models are better at predicting the extreme states, which is of greater societal benefits.
- AutoML still outperforms all the other machine learning models for predicting extreme AMV states.

Conclusions and future steps

 Predicting AMV, especially for extreme states, are of great societal benefits, and all the machine learning based models outperform baseline persistence forecast.

AutoML, with minimal user-end tuning, has the best performance. This provides
potential for stakeholders or local climate centers to use such method without
many technical barriers.

- For the next steps, we will focus on the interpretability:
 - Which specific regions in North Atlantic contributes the most to the prediction of extreme AMV states?
 - Natural variability and anthropogenic climate change, which component contributes the most to the predictability?

