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Abstract

We consider a variant of the classical problem of designing or expanding an
electricity network. Instead of minimizing only investment and production costs,
however, we seek to minimize some mixture of cost and greenhouse gas emissions,
even if the underlying dispatch model does not tax emissions. This enables grid
planners to directly minimize consumption-based emissions, regardless of whether
or not the carbon market incorporates a carbon tax. We solve this problem using
gradient descent with implicit differentiation, a technique recently popularized
in machine learning. To demonstrate the method, we optimize transmission and
storage resources on the IEEE 14-bus test network and compare our solution to
one generated by standard planning with a carbon tax. Our solution significantly
reduces emissions for the same levelized cost of electricity.

1 Introduction

In order to mitigate the escalating climate crisis, electricity networks must be redesigned to enable
increased renewable penetration and reduce greenhouse gas emissions. This will involve making
long-term structural changes to the grid that may drastically influence day-to-day grid operations.
Because electricity grid investments are expensive and infrequent, choosing the right design decisions
is a fundamental problem in power systems.

Expansion planning is the problem of optimally designing or modifying an infrastructure network
to meet demand growth alongside cost and security objectives. In expansion planning problems, a
grid planner optimizes structural variables, e.g., power line capacity, to minimize the sum of the
investment cost—the cost to modify the network—and the operation cost—the cost to operate the
grid given the chosen network variables. The latter is determined by solving the dispatch problem
(also called the production cost model), in which electricity generators are dispatched to meet demand
at minimal cost while satisfying physical constraints.

Traditionally, monetary costs have been the primary focus of expansion planning studies. Although
recent studies have introduced emissions-related penalties in the planning objective [1, 2, 3, 4], these
works only model emissions insofar as how they affect monetary costs via a carbon tax or cap.
Importantly, this assumes the underlying dispatch problem uses a carbon tax or cap when dispatching
generators, which is often not the case in practice. In contrast, real world grid planners may be tasked
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with modifying the network to drastically reduce emissions (say, to comply with a state mandate),
even if the corresponding dispatch model does not tax or cap emissions.

Contribution. We formulate the problem of minimizing a mixture of carbon emissions and mone-
tary costs during planning. We solve this problem using gradient descent via implicit differentiation,
a popular technique in machine learning for differentiating through optimization problems. We
compare our method to planning with a carbon tax on the IEEE 14-bus network, and show that, at the
same levelized cost of electricity, emissions are lower when emissions are included in the planning
objective rather than through a carbon tax.

1.1 Related work

Expansion planning. Expansion planning problems have been a focus of power systems research
for several decades [5, 6]. Much of this research has focused on building better models for electricity
grid operation [7, 8, 9, 10, 11], dealing with uncertainty [7, 12, 13, 14], and developing scalable
algorithms [15, 16, 17, 18, 19, 20]; see [6] for a comprehensive overview. Recently, several papers
have considered expansion planning with carbon emissions by incorporating a carbon tax or cap to
the electricity market dispatch process [1, 2, 3, 4] or through carbon equity constraints [21].

Implicit differentiation and bi-level optimization. Implicit differentiation is a method for dif-
ferentiating the solution map x∗(θ) of a parameterized system of equations K(x, θ) = 0. Implicit
differentiation is not new—it goes back at least to Cauchy [22]—but has recently been popularized
in machine learning [23, 24, 25]. Since any convex optimization problem can also be formulated
as solving a system of nonlinear equations, e.g., the KKT conditions, this technique can be used to
differentiate through optimization problems. This often occurs in bi-level optimization [26, 27, 28],
where an optimization problem is embedded in another problem. In power systems, implicit differen-
tiation has recently been used for sensitivity analysis [29], network discovery [30], and reinforcement
learning [24], although applications of the technique can be found at least as far back as [31].

2 Expansion planning

In this section, we describe the expansion planning problem, and its variant with a carbon tax.

Dispatch problem. Given an electricity network parameterized by θ ∈ Rk, the dispatch problem
minimizes electricity cost while satisfying demand, and is given by,

minimize
∑T
t=1 f(ut;xt)

subject to u ∈ C(x, θ).
(1)

where the variables u = (u1, . . . , uT ) ∈ Rn may represent, for example, the amount of energy to
be produced by each generator at time t. The parameters x = (x1, . . . , xT ) ∈ RTm are external
data, e.g., electricity demand. Physical constraints, e.g., that transmission lines do not violate thermal
limits, are represented by the convex set C(x, θ) ⊂ RTn. Optimization-based dispatch models are
common in practice and used to dispatch generators in many major balancing authorities across
the United States [32, 33]. We denote the objective function by J(u) =

∑
t f(ut;xt) and let

u∗(θ) : Rk → RTn be the optimal solution of (1) as a function of θ. We call J(u∗(θ)) the operation
cost of θ.

Expansion planning problem. In the expansion planning problem, we optimize the parameters of
an electricity network to minimize cost. For instance, transmission lines capacities can be increased
between two nodes in order to reduce congestion. In this problem, we minimize the sum of the
investment cost of the network, denoted by Q(θ), and the operation cost J(u∗(θ)). The investment
cost represents the monetary cost required to modify or expand the network, for example, by
reinforcing transmissions lines or building electricity storage. We assume Q(θ) has a simple form,
e.g., Q(θ) = cT θ. We consider continuous planning problems where the parameters of the network
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take on continuous values.1 The expansion planning problem is then,

minimize Q(θ) + J(u∗(θ))
subject to θ ∈ S, (2)

where the variable is θ ∈ Rk, and S ⊂ Rk is a convex set. Problem (2) can be formulated as a joint
optimization problem over u and θ, then solved with standard optimization techniques. Often, the
bi-level structure of (2) is exploited in the solution method [34]. For example, fixing θ and solving
the dual of (1) can be used to generate a lower bound on J(u) (this method is known as Bender’s
decomposition; [6, 15, 35]).

Carbon tax. Let the emissions at time t be given by h(ut;xt). Often, h is modeled with a simple
function, e.g., h(ut;xt) = dTu. Then the dispatch problem with a carbon tax of rate λ would
correspond to solving (1), only with the objective

∑
t f(ut;xt) + λ

∑
t h(ut;xt). Previous papers

[1, 2, 3, 4] have considered expansion planning when the dispatch problem includes a carbon tax (or
cap) as a tool for reducing emissions.

3 Emissions-aware expansion planning

In the emissions-aware expansion planning problem, we directly design the network so that the
dispatch process naturally results in lower emissions. Let E(u) =

∑
t h(u

∗
t (θ);xt) be the total

emissions produced by the network. Then, the emissions-aware expansion planning problem is,

minimize Q(θ) + J(u∗(θ)) + λE(u∗(θ))
subject to θ ∈ S, (3)

where the variable is θ ∈ Rk. We call the parameter λ ≥ 0 the emissions penalty, which determines
how much we weight emissions relative to monetary costs. We can interpret λ as the monetary value
of reducing one unit of emissions; for example, λ = 200 means we price a metric ton of CO2 at $200.

Comparison to planning with a carbon tax. By adding a carbon tax to the dispatch problem in
standard expansion planning, we price emissions during operation. In contrast, the emissions-aware
expansion planning directly incorporates emissions in the planning objective. Although these methods
are not mutually exclusive (we can have an emissions-aware expansion planning problem using a
dispatch model with a carbon tax), they represent two distinct approaches to reducing emissions:
the former reduces emissions by raising the price of electricity produced by emissions-intensive
generators, and the latter by encouraging investment decisions that promote using cleaner resources.

3.1 Implicit gradient descent

Unlike (2), problem (3) cannot be converted to a joint optimization problem. Specifically, since in (2)
the only dependence on u∗(θ) is through the objective of (1), we can replace u∗(θ) with the variable u
and still attain the same solution. However, we cannot do the same for E(u∗(θ)) =

∑
t h(u

∗
t (θ);xt),

since u∗(θ) is not the result of minimizing E(u). Intuitively, the challenge is that (1) and (3) are
attempting to optimize for different parameters. This is consistent with the real world—the goal of
the dispatch problem is to minimize monetary costs, but network designers often wish to consider
additional emissions-related objectives (for example, because of a state-issued mandate).

Instead, we use a projected gradient descent algorithm to solve (3). We first initialize θ(0) randomly.
Then, at each iteration, we solve (1) with θ = θ(k) and update the network parameters to be

θ(k+1) := projS

(
θ(k) − ηk∇L(θ)

)
,

where ηk is the step size at iteration k and L(θ) = Q(θ) + J(θ) + λE(θ). The projection operator
projS enforces the constraints on θ. Using the chain rule, one can show that ∇L(θ) = ∇Q(θ) +
Du∗(θ)T (∇uJ(u∗(θ)) + λ∇uE(u∗(θ))) , where Du∗(θ) ∈ RnT×k is the Jacobian of the solution
map u∗(θ). The main technical challenge lies in computing the Jacobian of the solution map, since it

1Often, expansion upgrades are modeled as integer variables. Handling integer variables in the emissions-
aware expansion planning problem is left as future work.
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Figure 1: Results from jointly planning line and storage capacities on the IEEE 14-bus network.
(A) Objective value of (3) for λ = 500 at each iteration of projected gradient descent, starting from
three random initializations. (B) Levelized electricity costs and total emissions for varying emissions
prices, using both the penalty and carbon tax model. The green circle is an emissions penalty of
λ = 500, and the red and yellow circles are carbon taxes of λ = 125 and λ = 500, respectively. (C)
Network modifications after planning with a penalty of λ = 500 or a tax of λ = 125. Both solutions
achieve a similar levelized cost, but the emissions-aware problem has notably lower emissions.

usually does not have a clear analytical formula. To do this, we note that u∗t (θ) is the solution map of
a non-linear system of equations in u and θ (namely, the KKT conditions of (1)). Therefore, we can
apply the implicit function theorem to differentiate the solution map and compute Du∗t (θ) (as long as
the solution to (1) exists uniquely, and under reasonable technical conditions). Additional technical
details are available in Appendix A.

4 Numerical experiments

To demonstrate the proposed method, we solve an emissions-aware expansion planning problem
(without a carbon tax) on a modified IEEE 14-bus network with 50% renewable penetration. In this
problem, the grid planner may upgrade line capacities and add storage resources at each node. We
compare our solutions to those generated via standard expansion planning in a dispatch market with a
carbon tax.

To make the problem realistic, we use demand and renewable time series from historical California
ISO data. We model both line and storage upgrades as continuous variables. For the dispatch
problem, we use a dynamic transport model with quadratic generator costs f(ut;xt) = αTut +
uTt diag(β)ut. We model generator emissions as linear, h(ut;xt) = γTut. Storage resources are
optimally dispatched to minimize total cost. We use a linear investment cost Q(θ) = cT θ for
upgrading transmission and storage capacity. Additional details are available in Appendix B.

Results. We solve the emissions-aware expansion planning problem with 20 distinct emissions
penalties ranging in λ ∈ [0, 2000]. Similarly, we solve the standard expansion planning problem
using a dispatch model with 20 distinct carbon taxes ranging in λ ∈ [0, 500]. Results are displayed in
Figure 1. In general, the emissions-aware problem is not convex, and different initializations may
converge to different solutions, as shown in Panel A. Notably, as displayed in Panel B, standard
planning in the carbon tax setting leads to a significantly higher emissions rate per levelized cost
of electricity.2 This is because the emissions-aware problem directly reduces emissions through
additional grid investment (see Panel C), whereas the standard problem with a carbon tax simply
raises the price of electricity from high-emitting generators, passing on electricity costs to consumers.

Discussion. These preliminary experiments highlight two important points. First, even in electricity
markets without carbon taxes, grid planners can significantly reduce emissions by intelligently

2Levelized cost is the total monetary cost (investment plus operation) divided by the total generation.
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investing in transmission and storage capacity. Second, because a carbon tax raises the price of
electricity, the emissions reduction from grid investment often outperforms that from a tax at the same
levelized cost of electricity. In practice, we expect a grid planner to use a mix of both policies (the
revenue from a carbon tax, for example, could be used to fund investments that reduce emissions).

5 Conclusion

We introduce the emissions-aware expansion planning problem and solve it with projected gradient
descent using implicit differentiation. Our empirical results suggest that directly incorporating
emissions during planning outperforms standard planning in markets with a carbon tax. The proposed
method could be used by grid planners to make grid expansion decisions that directly reduce
greenhouse gas emissions. Future work includes incorporating uncertainty and integer constraints.
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A Implicit differentiation

The implicit function theorem is a classical theorem from analysis. The theorem roughly states that
given a system of equations K(x, θ) : Rn ×Rd → Rn and a point (x0, θ0) ∈ Rn+d such that

• K(x0, θ0) = 0,

• the partial Jacobian DxK(x0, θ0) ∈ Rn×n is invertible,

then

• there exists a function x∗(θ) : Rd → Rn such that x∗(θ0) = x0 and K(x∗(θ), θ) = 0 in a
local region around x0

• the Jacobian of x∗(θ) is given by Dx∗(θ) = −DxK(x∗(θ), θ)−1DθK(x∗(θ), θ).

The above theorem also requires several technical conditions, e.g., that K(x, θ) is differentiable.
There are a plethora of references available on the implicit function theorem, and we refer the reader
to [22] for additional details.

In the context of optimization, the implicit function theorem allows us to compute sensitivities of a
parametrized convex optimization problem, i.e., an optimization problem that changes according to
some real variables. This comes from the fact that the solution x∗(θ) to a parametrized optimization
problem can be viewed as the solution to a system of non-linear equations K(x∗(θ), θ) = 0—namely,
the KKT conditions of the problem. One can also use other fixed point conditions that guarantee
optimality as the non-linear system. Notably, the condition that K(x0, θ0) = 0 corresponds to the
existence of a solution, and the condition thatDxK(x0, θ0) is invertible corresponds to the uniqueness
of a solution. To learn more, we recommend the reader refer to [25, 36], or to [22] for a more detailed
analysis.

B Experiment details

In this section, we describe our experimental setup in detail for completeness and reproduciblity. All
code was written in Julia and will be made publicly available after submission.

Dispatch problem. We use a dynamic transport model for the dispatch problem, given by,

minimize Z
∑T
t=1

(
αT gt +

1
2g
T
t diagm(β)gt

)
subject to Apt = dt −Bgt + δct − δdt , t = 1, . . . , T,

st = st−1 + ηcδ
c
t + (1/ηd)δ

d
t , t = 1, . . . , T,

0 ≤ gt ≤ gmax, t = 1, . . . , T,
|pt| ≤ pmax, t = 1, . . . , T,
|δct | ≤ ρC, t = 1, . . . , T,
|δdt | ≤ ρC, t = 1, . . . , T,
|st| ≤ C, t = 1, . . . , T,

(4)

with variables (gt, pt, δ
c
t , δ

d
t , st) ∈ R`+m+3n for t = 1, . . . , T . All inequalities are to be read

elementwise. The parameters of the problem are the problem scaling Z ∈ R, the time horizon
T ∈ Z+, the charge and discharge efficiencies ηc, ηd ∈ R, the storage (dis)charging rate ρ ∈ R, the
generation costs α, β ∈ R`, the generation capacities gmax ∈ R`, the line capacities pmax ∈ Rm,
the storage capacity C, the network incidence matrix A ∈ Rn×m, and the node-generator map
B ∈ Rn×`. We set the time horizon to T = 24 and the problem scaling to Z = 5 × 365 = 1825,
i.e., we simulate the grid hourly for 5 years. Note that this makes the assumption that every day
of operation is the same. Although this is not the case in practice, developing and sampling grid
operation scenarios is not the focus of this work, and many papers [7, 12] have already addressed this
question.

Expansion planning variables. We let θ = (pmax, C).
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Parameters. We set the charge and discharge efficiencies to ηc = ηd = 0.95. The storage
(dis)charge rate is set to ρ = 0.25. These parameters are chosen to be reasonable values for grid scale
lithium-ion battery storage. We give each of the m lines a random length ai ∈ [40, 50] miles. We also
estimate the cost per mile MWh as a0 = 3, 000, We set the cost of storage to be b0 = 350, 000 per
MWh. The total investment cost is then Q(θ) = cT θ, where c = (a0a, b01n). We set the emissions
rates of the six generators to h(gt) = vT gt, where v = (0.35, 0.45, 1.1, 1.2, 1.3). These values were
chosen to reflect likely fuel source of each generator, given their costs and capacities.

Network data. We use a modified version of the IEEE 14-bus network and parse the data using
PowerModels.jl. The case file lacks thermal line limits, so PowerModels.jl sets these automati-
cally. Generator prices α, β, generator and line capacities gmax, pmax, and the network and generator
topologies A,B all come from this file. We also load nodal demands d̃ ∈ Rn, which we use as the
peak demands for the network. Nodal demand is scaled by 2.5 to simulate demand growth, and nodal
generation is also scaled so that 1T gmax = 1T d̃.

Demand and renewable time series. We use demand and renewable data from CAISO, available
for free online from their OASIS portal (http://oasis.caiso.com/mrioasis). We extract re-
gional demand and solar hourly time series from July 1st, 2021. We normalize each of the K = 5
demand time series drel,k ∈ RT so that max(drel,k) = 1 and each of the R = 3 solar time series urel,r

so that 1Turel,r = 1. Each node i is given a demand profile ki and a solar profile ri, both selected uni-
formly at random. Then the net demand at time t is set to be (dt)i = d̃id

rel,ki
t −ω1T (d̃idrel,ki)urel,ri ,

where ω = 0.5 is the renewable penetration. In other words, demand at each node is the product
of the normalized CAISO demand time series with the peak demand at the node, minus the current
solar generation. At 50% renewable penetration, 50% of total demand is met by renewable resources.
However, since this is spread out non-uniformly throughout the day, some nodes have very high or
very low (even negative) net demand during some time periods.
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