

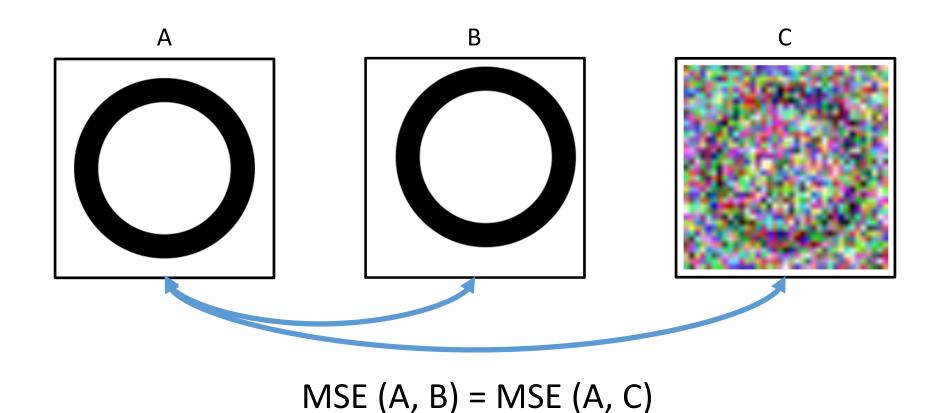
Overview

 AtmoDist is a novel representation learning technique for atmospheric dynamics

Learned representations can be utilized in downstream applications,
e.g. for Super-Resolution / Downscaling (this work)

Demonstrates usefulness of representation learning for atmospheric dynamics

MSE / L2 is not an ideal metric

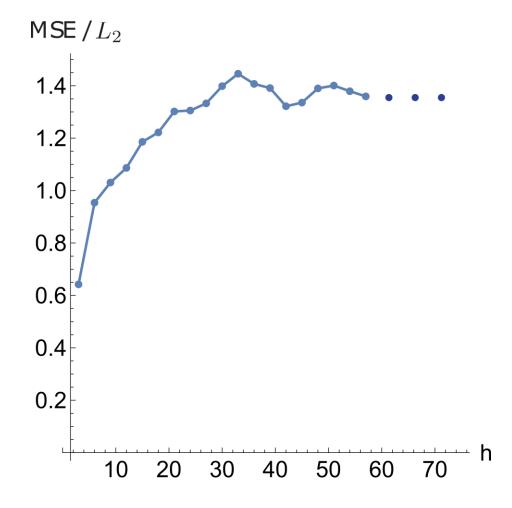


MSE / L2 is not an ideal metric

 Sharp edges with small offset can result in big distances

 Biased towards overly smooth images

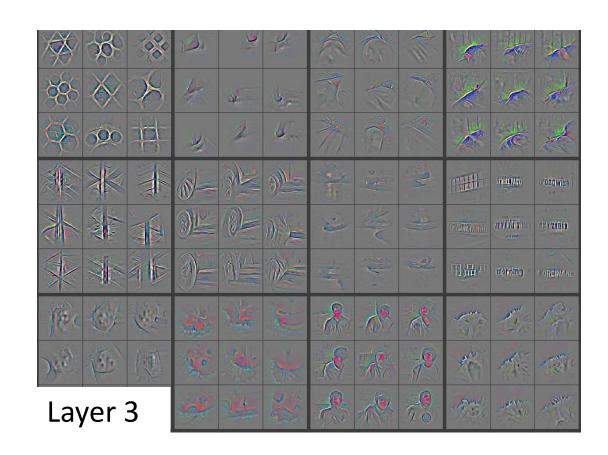
Converges quickly to equilibrium



Can we do better?

 During training, neural networks learn progressively more abstract features

 Thus, metrics based on these features measure semantic differences, not pixel-level perturbations



Can we do better?

 Yes! Metrics based on neural network activations have been used for a long time in Computer Vision

• Examples: Super-resolution, Styletransfer, Fréchet Inception Distance

 However: Require pretrained neural network!

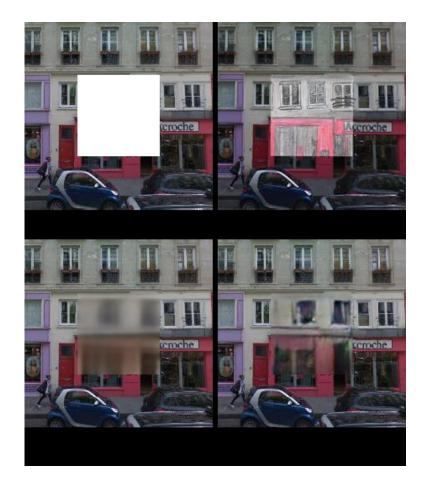
(Almost) no labelled datasets are available

Labelling atmospheric data is tedious and requires domain experts

- Solution: Self-supervised learning
 - Train a network on a "pretext task" for which labels can be computed
 - Pretext-task forces network to capture semantic meaning in order to solve well

Pretext tasks

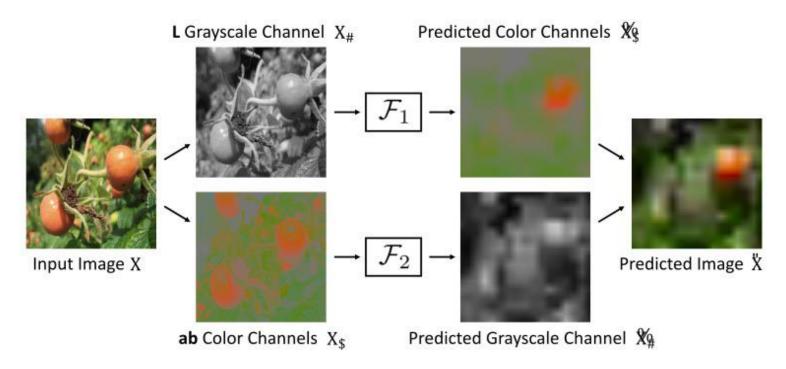
• Example: Inpainting of removed regions



Context Encoders: Feature Learning by Inpainting, Pathak et al., 2016

Pretext tasks

• Example: Predicting color from grayscale and vice-versa



Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction, Richard et al., 2017

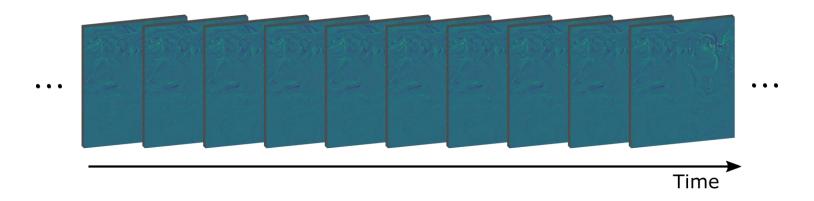
Pretext tasks

What would be a suitable task for atmospheric dynamics?

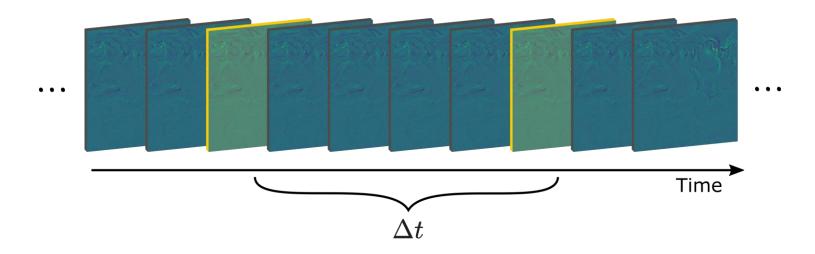
 Not every task for CV is directly suited for atmospheric dynamics (e.g. rotations or jigsaw-puzzles)

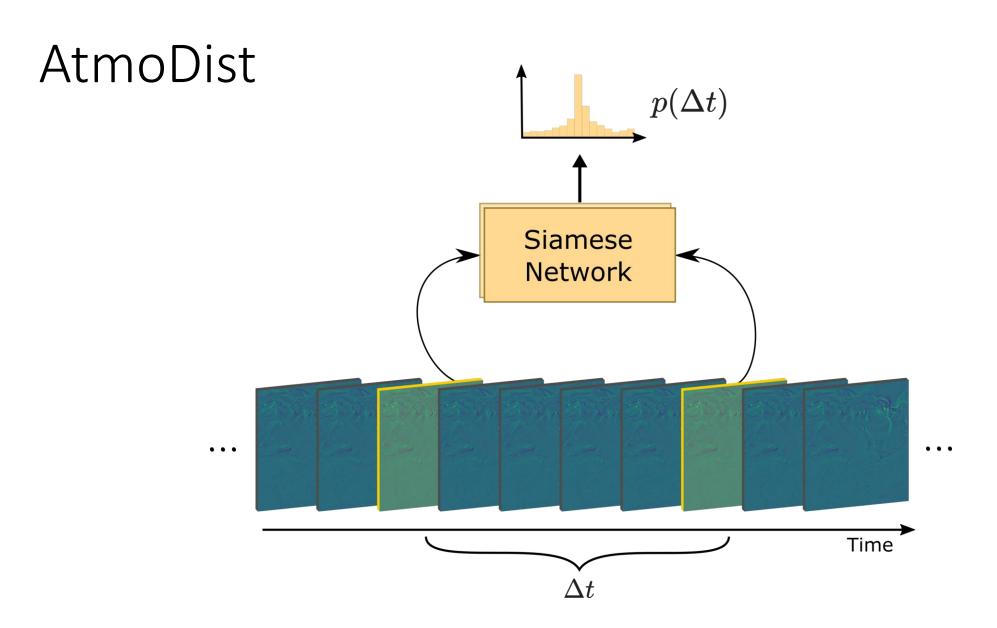
 Predicting the temporal distance between two atmospheric states requires understanding how these systems evolve over time

AtmoDist

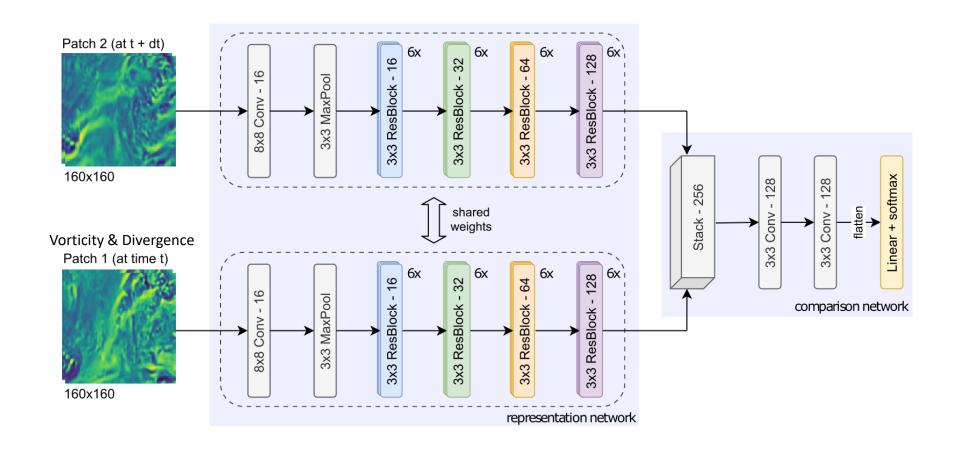


AtmoDist

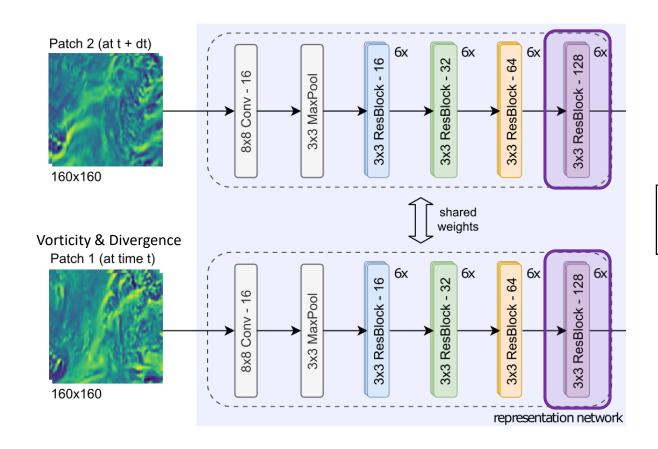




Network architecture



Network architecture

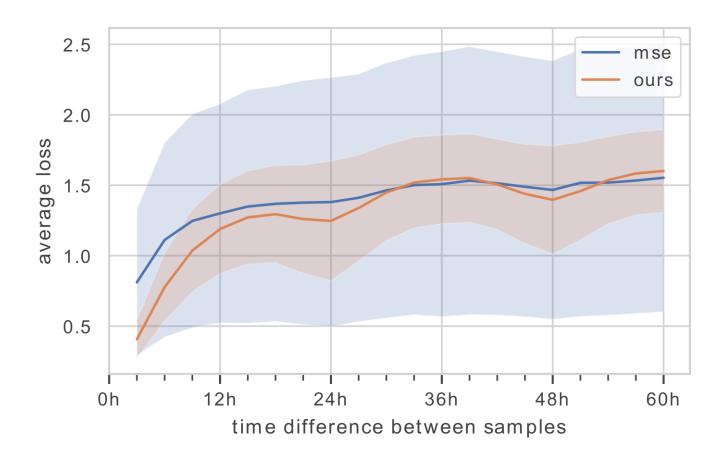


$$d(x_1, x_2) = |F(x_1) - F(x_2)|_2^2$$

Dataset

- ERA5 reanalysis data
- Vorticity and Divergence (potentials of the wind velocity field)
- Height: approx. 883 hPa (one level)
- 160 x 160 patches sampled from 1280 x 2560 lat-lon grids
- Training: 1979 1998, Evaluation: 2000 2006

Evaluation

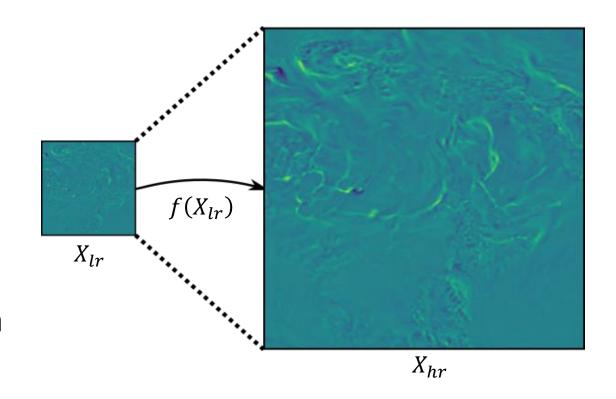


Application: Super-Resolution

• Task: Given a low-resolution image X_{lr} find a high-resolution image X_{hr}

• In general, this is ill-posed

 But: A good matching image can often be found heuristically



SRGAN

Jointly minimizes a content loss and adversarial loss

Content-loss based on a VGG network pre-trained on ImageNet

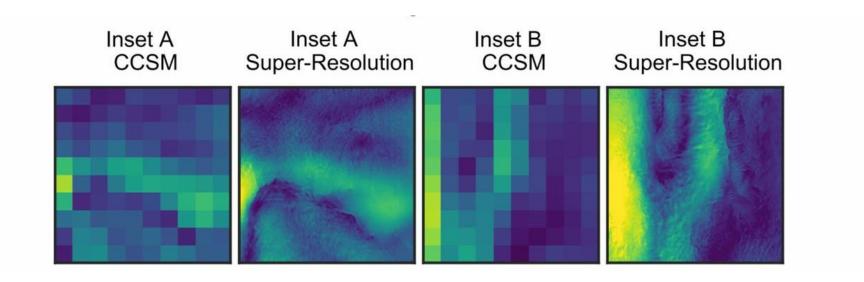
$$\mathcal{L}(X_{Sr}, X_{hr}) = |F(X_{Sr}) - F(X_{hr})|_{2}^{2} + \ell_{adv}(X_{Sr})$$

content loss

adversarial loss

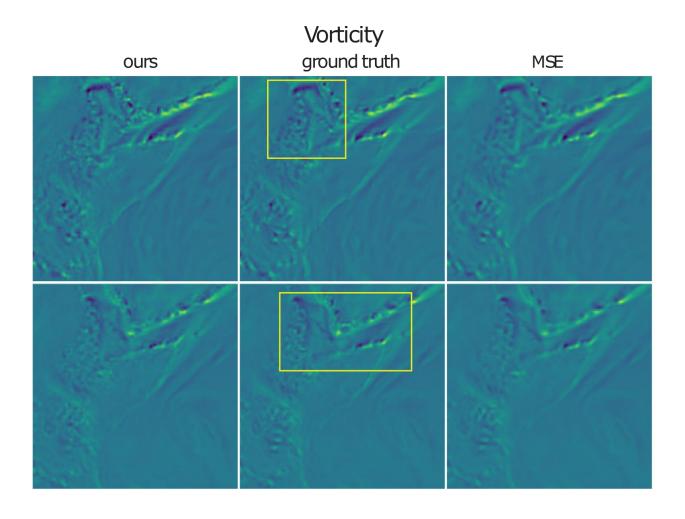
SRGAN

- Used for SOTA super-resolution of wind and solar data
- But: MSE as content loss

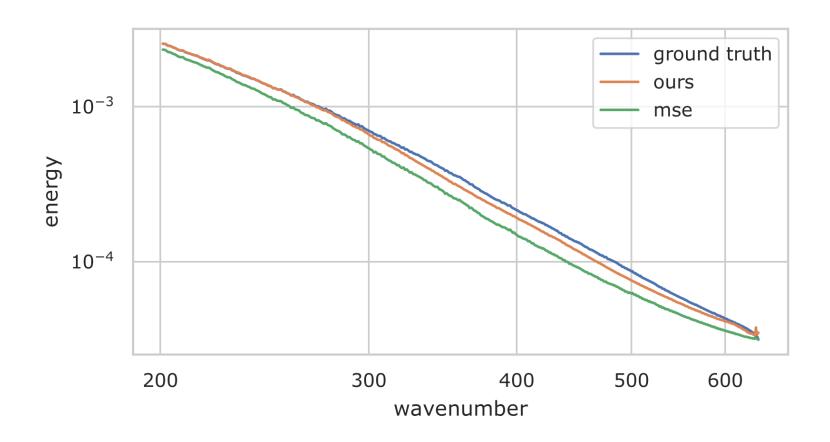


Adversarial super-resolution of climatological wind and solar data, Stengel et al., 2020

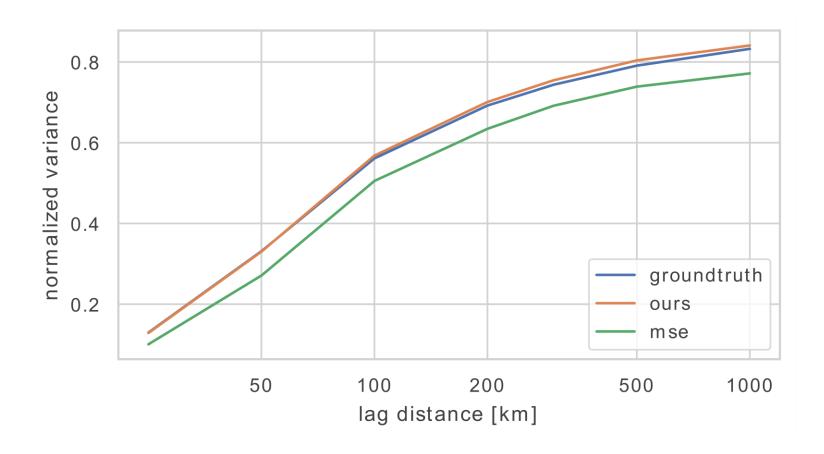
Evaluation on Super-Resolution



Energy spectrum

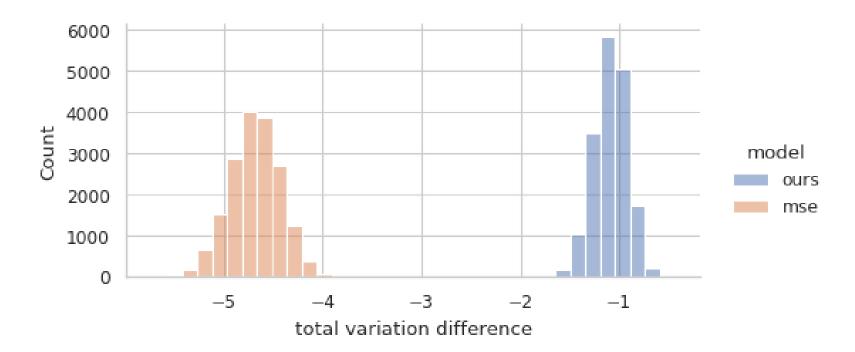


Semivariogram



Total Variation

- Standard functional in Computer Vision
- Distribution of (absolute) errors:

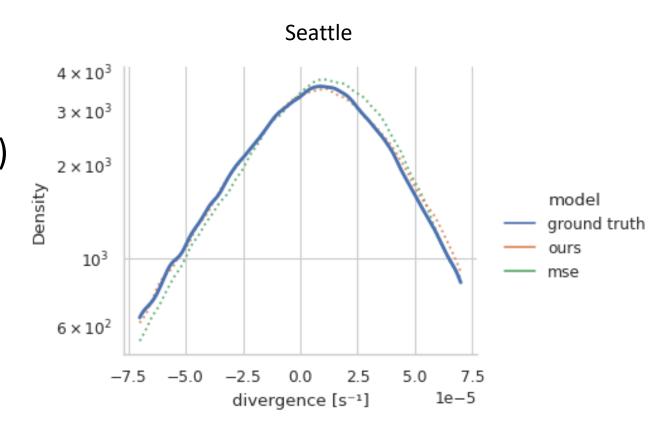


Pointwise statistics

Calculated across time

150 big cities (evenly distributed)

 Systematic evaluation with Wasserstein distance



Pointwise statistics

	Better	Equal	Worse
Divergence	102	12	36
Vorticity	90	11	49

Pointwise statistics



Future Work

- Upscaling: More data, levels, variables
- Availability to other researchers: How can we account for different data / variable choices?
- Incorporate spatial dependencies as well: spatio-temporal pretext task
- How to deal with climate change / distribution shift?
 - Domain Adaptation could help here

Future Work

- Detection of atmospheric phenomena
 - Tropical cyclones & atmospheric rivers (ClimateNet, Prabhat et al., 2021)
 - Blocking events
- Forecasting applications: AtmoDist as loss-function

• Evaluation of generative models or simulations (e.g. analogous to Fréchet Inception Distance; Heusel et al., 2017)

Summary

 AtmoDist provides a simple but effective pretext task for atmospheric data

 As unlabelled data is abundant, but labelled data is scarce, unsupervised / semi-supervised learning is a promising direction for atmospheric machine learning

 We demonstrated the usefulness of these ideas by improving upon the previous SOTA for SR

Code available at

https://github.com/sehoffmann/AtmoDist