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Climate change effects on crop yield

e Crop production is extremely sensitive to fluctuations in climatic
factors such as temperature, precipitation, soil moisture
(Ortiz-Bobea, 2018)

o For example, extreme heat or drought severely hurts crop growth
o Climate change has already reduced agricultural productivity growth
by 21% (Ortiz-Bobea, 2021)
e To adapt to these effects, we would like to forecast crop yields in
advance
o |Important for food security, supply stability, seed breeding, economic
planning



Goal: forecast crop yields in advance

e Use weather and soil data to forecast crop yields, preferably in the
middle of the growing season (before harvest)

e F[or this study, we focus on corn and soybean yields for US counties
Example features for each county/year: temperature, precipitation,
humidity, soil moisture, soil temperature, soil quality features (e.g.
available water capacity, bulk density and electrical conductivity, pH,

and organic matter)
o  Weather features have a value for each week
o Aggregated to county-level



Existing work on crop yield prediction

e Most existing work uses standard feature-based supervised
learning methods

o Neural networks, tree-based methods (e.g. decision tree, random
forest), linear regression

e A recent paper (Saeed & Khaki, 2021) introduced a CNN-RNN
framework to extract features across different temporal scales
(weekly/yearly) and across soil depth layers

e However, they do not make use of geospatial information
o Example: nearby counties are correlated and have more in common
o Should make use of this geospatial and temporal structure!



Our GNN-RNN framework
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Our GNN-RNN framework
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Extracting features within a year

For a single datapoint (one year Learned embedding
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Extracting features within a year
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Using graph neural networks

We use a graph neural network (GNN) method, GraphSAGE (Hamilton et al, 2018), to
allow each county’s feature representation to be informed by geospatial context

e FEach county is a node, and edges connect neighboring counties

7

—"
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1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure from Will Hamilton et al. Inductive Representation Learning on Large Graphs.
Advances in Neural Information Processing Systems, pages 1024-1034, 2017.



Our GNN-RNN framework
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Our GNN-RNN framework

Predicted crop yield
(for given county, year)
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Results

e We tested our model on (corn, soybean) for years (2018, 2019).*
o  For test year t, we train on years from 1981 to (t-2) inclusive, validate on year (t-1), and test
on yeart

: Method RMSE R? Corr
e Example result on 2018 corn: By STRIE 0350 T 0778
ridge 1y 0.9255 | 0.1428 | 0.7626
gradient-boosting ly | 0.7402 0.4516 0.7794

gru ly 0.5938 | 0.6472 | 0.8158

Istm ly 0.6146 | 0.6220 | 0.8303

cnn ly 0.5824 | 0.6606 | 0.8235

gnn ly (ours) 0.4846 | 0.7517 | 0.8759

gru Sy 0.6765 | 0.5419 | 0.8194

Istm Sy 0.6542 | 0.5716 | 0.8060
cnn-rnn 5y 0.5511 0.6936 | 0.8425

| gnn-rnn 5y (ours) | ( 0.4900 | 0.7595 | 0.8731 |
(std) (0.0191) | (0.0186) | (0.0092)

(a) 2018 corn results

e For methods that only use a single year: GNN outperforms other single-year methods
e For methods that use a 5-year sequence: GNN-RNN outperforms all other methods



Example result

Predicted yield (bushels/acre)

True vs predicted yield: 2018_test
corn

Predicted corn yield (bushels/acre): 2018_test
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Early prediction results

We are also interested in predicting in the middle of the year, before harvest.
To simulate this, we choose a date (e.g. June 1). At test time, up to that date we use the actual
features for the year, and after that date we replace the features with historical averages

e GNN-RNN framework still does best in this setting

Method RMSE | R? Corr
Istm ly 0.6347 | 0.5968 | 0.8148
cnn ly 0.7253 | 0.4736 | 0.7004
gnn ly (ours) 0.5877 | 0.6543 | 0.8124
Istm Sy 0.7004 | 0.5091 | 0.7708
cnn-rnn S5y 0.6532 | 0.5730 | 0.7732
gnn-rnn Sy (ours) | 0.5836 | 0.6591 | 0.8259

Table 2: Early prediction results (2018 corn, after June 1).



Conclusion

e We developed a GNN-RNN framework to harness geospatial and temporal
structure for crop yield prediction
o Nearby counties are correlated and share information
e Outperforms existing methods across variety of crops and years
e Model’s predictions could help us forecast the effects of climate change, allow for
better adaptation, and facilitate humanitarian/economic planning to alleviate food
security challenges
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