A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction

Joshua Fan*, Junwen Bai*, Zhiyun Li*, Ariel Ortiz-Bobea, Carla Gomes Cornell University NeurIPS 2021 Workshop, Tackling Climate Change with Machine Learning

*equal contribution

Climate change effects on crop yield

- Crop production is extremely sensitive to fluctuations in climatic factors such as temperature, precipitation, soil moisture (Ortiz-Bobea, 2018)
 - For example, extreme heat or drought severely hurts crop growth
 - Climate change has already reduced agricultural productivity growth by 21% (Ortiz-Bobea, 2021)
- To adapt to these effects, we would like to forecast crop yields in advance
 - Important for food security, supply stability, seed breeding, economic planning

Goal: forecast crop yields in advance

- Use weather and soil data to forecast crop yields, preferably in the middle of the growing season (before harvest)
- For this study, we focus on corn and soybean yields for US counties
- Example features for each county/year: temperature, precipitation, humidity, soil moisture, soil temperature, soil quality features (e.g. available water capacity, bulk density and electrical conductivity, pH, and organic matter)
 - Weather features have a value for each week
 - Aggregated to county-level

Existing work on crop yield prediction

- Most existing work uses standard feature-based supervised learning methods
 - Neural networks, tree-based methods (e.g. decision tree, random forest), linear regression
- A recent paper (Saeed & Khaki, 2021) introduced a CNN-RNN framework to extract features across different temporal scales (weekly/yearly) and across soil depth layers
- However, they do not make use of geospatial information
 - Example: nearby counties are correlated and have more in common
 - Should make use of this geospatial and temporal structure!

Extracting features within a year

For a single datapoint (one year and county):

- Use 1D CNN to extract features from weekly time-series of weather and land surface features
 - Temperature, precipitation, soil moisture, etc

Extracting features within a year

For a single datapoint (one year and county):

- Use 1D CNN to extract features from weekly time-series of weather and land surface features
 - Temperature, precipitation, soil moisture, etc
- Use 1D CNN to extract features from soil data (varying across depths)

Using graph neural networks

We use a graph neural network (GNN) method, GraphSAGE (Hamilton et al, 2018), to allow each county's feature representation to be informed by **geospatial context**

Each county is a node, and edges connect neighboring counties

Figure from Will Hamilton et al. Inductive Representation Learning on Large Graphs. *Advances in Neural Information Processing Systems*, pages 1024–1034, 2017.

using aggregated information

from neighbors

Results

- We tested our model on (corn, soybean) for years (2018, 2019).*
 - \circ For test year t, we train on years from 1981 to (t-2) inclusive, validate on year (t-1), and test on year t
- Example result on 2018 corn:

Method	RMSE	R^2	Corr
lasso 1y	0.7846	0.3839	0.7778
ridge 1y	0.9255	0.1428	0.7626
gradient-boosting 1y	0.7402	0.4516	0.7794
gru 1y	0.5938	0.6472	0.8158
lstm 1y	0.6146	0.6220	0.8303
cnn 1y	0.5824	0.6606	0.8235
gnn ly (ours)	0.4846	0.7517	0.8759
gru 5y	0.6765	0.5419	0.8194
lstm 5y	0.6542	0.5716	0.8060
cnn-rnn 5y	0.5511	0.6936	0.8425
gnn-rnn 5y (ours)	0.4900	0.7595	0.8731
(std)	(0.0191)	(0.0186)	(0.0092)

(a) 2018 corn results

- For methods that only use a single year: GNN outperforms other single-year methods
- For methods that use a 5-year sequence: GNN-RNN outperforms all other methods

Example result

Early prediction results

- We are also interested in predicting in the middle of the year, before harvest.
- To simulate this, we choose a date (e.g. June 1). At test time, up to that date we use the actual features for the year, and after that date we replace the features with **historical averages**
- GNN-RNN framework still does best in this setting

Method	RMSE	R^2	Corr
lstm 1y	0.6347	0.5968	0.8148
cnn 1y	0.7253	0.4736	0.7004
gnn 1y (ours)	0.5877	0.6543	0.8124
lstm 5y	0.7004	0.5091	0.7708
cnn-rnn 5y	0.6532	0.5730	0.7732
gnn-rnn 5y (ours)	0.5836	0.6591	0.8259

Table 2: Early prediction results (2018 corn, after June 1).

Conclusion

- We developed a GNN-RNN framework to harness geospatial and temporal structure for crop yield prediction
 - Nearby counties are correlated and share information
- Outperforms existing methods across variety of crops and years
- Model's predictions could help us forecast the effects of climate change, allow for better adaptation, and facilitate humanitarian/economic planning to alleviate food security challenges

Acknowledgements

Funding sources:

- USDA cooperative agreement 58-6000-9-0041
- USDA NIFA Hatch project 1017421

Rich Bernstein - technical support, proofreading

Samuel Porter - help with processing gSSURGO soil quality data

References

Ariel Ortiz-Bobea, Toby R Ault, Carlos M Carrillo, Robert G Chambers, and David B Lobell. Anthropogenic climate change has slowed global agricultural productivity growth. *Nature Climate Change*, 11(4):306–312, 2021.

Ariel Ortiz-Bobea, Erwin Knippenberg, and Robert G Chambers. Growing climatic sensitivity of us agriculture linked to technological change and regional specialization. *Science Advances*, 1884(12):eaat4343, 2018.

Saeed Khaki et al. A cnn-rnn framework for crop yield prediction. *Frontiers in Plant Science*, 21710:1750, 2020