
FIgLib & SmokeyNet: Dataset and Deep Learning
Model for Real-Time Wildland Fire Smoke Detection

Anshuman Dewangan
adewangan@ucsd.edu

Yash Pande
ypande@ucsd.edu

Hans-Werner Braun
hwb@ucsd.edu

Frank Vernon
flvernon@ucsd.edu

Ismael Perez
i3perez@sdsc.edu

Ilkay Altintas
ialtintas@ucsd.edu

Gary Cottrell
gary@ucsd.edu

Mai H. Nguyen
mhnguyen@ucsd.edu

Abstract

The size and frequency of wildland fires in the western United States have dramat-
ically increased in recent years. On high fire-risk days, a small fire ignition can
rapidly grow and get out of control. Early detection of fire ignitions from initial
smoke can assist response to such fires before they become difficult to manage.
Past deep learning approaches for wildfire smoke detection have suffered from
small or unreliable datasets that make it difficult to extrapolate performance to
real-world scenarios. In this work, we present the Fire Ignition Library (FIgLib),
a publicly-available dataset of nearly 25,000 labeled wildfire smoke images as
seen from fixed-view cameras deployed in Southern California. We also introduce
SmokeyNet, a novel deep learning architecture using spatio-temporal information
from camera imagery for real-time wildfire smoke detection. When trained on
the FIgLib dataset, SmokeyNet outperforms comparable baselines. We hope that
the availability of the FIgLib dataset and the SmokeyNet architecture will inspire
further research into deep learning methods for wildfire smoke detection, leading
to automated notification systems to reduce the time to wildfire response.

1 Introduction

The size and frequency of wildland fires in the western United States have increased in recent years.
In 2018 alone, 8,527 fires burned an area of 1.9 million acres (7,700 km2; nearly 2% of the state’s
area) in California, with an estimated economic cost of $148.5 billion [1].

On high fire-risk days, a small fire ignition can rapidly grow and get out of control. Consequently, the
detection of wildfires in the first few minutes after ignition is essential to minimizing their destruction.
However, it can take much longer for a fire to be reported using existing methods, especially in areas
with less human activity. Deep learning-based wildfire smoke detection systems can accurately and
consistently detect wildfires and provide valuable intel to reduce the time to alert authorities.

The goal of a wildfire smoke detection system can be structured as a binary image classification
problem to determine the presence of smoke within a sequence of images. Priorities include quick
time-to-detection, high recall to avoid missing potential fires, high precision to avoid frequent alarms
that undermine trust in the system [2], and efficient performance to operate in real-time on edge
devices. However, the task proves challenging in real-world scenarios given the transparent and
amorphous nature of smoke; faint, small, or dissipating smoke plumes; and false positives from
clouds, fog, and haze.
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Even before the rise in popularity of deep learning methods, the visual (e.g. color), spatial, and
temporal (i.e. motion) features of smoke were recognized as essential for the machine detection of
wildfires [3, 4, 5, 6]. More recently, deep learning approaches use a combination of convolutional
neural networks (CNNs) [7, 8, 9, 10, 11, 12, 13, 14], background subtraction [7, 12, 15], and
object detection methods [14, 16, 17, 18, 19] to incorporate visual and spatial features. Long short-
term memory (LSTM) networks [12, 18] or optical flow [9, 15, 20] methods have been applied to
incorporate temporal context from video sequences. However, the difficulty of acquiring a large,
labeled wildfire smoke dataset has limited researchers to using small or unbalanced datasets [6, 18],
manually searching for images online [8, 11, 13, 18], or synthetically generating datasets [13, 16, 21].

To address the need for a consistent evaluation benchmark for real-world performance, we present the
Fire Ignition Library (FIgLib), a publicly-available dataset of nearly 25,000 labeled wildfire smoke
images as seen from fixed-view cameras in Southern California. We also introduce SmokeyNet,
a novel deep learning architecture using spatio-temporal information from camera imagery for
real-time wildfire smoke detection. When trained on the FIgLib dataset, SmokeyNet outperforms
comparable baselines in terms of accuracy and rivals human classification performance. We hope that
the availability of the FIgLib dataset and the SmokeyNet architecture will inspire further research
into deep learning methods for wildfire smoke detection, leading to automated notification systems to
reduce the time to wildfire response.

2 FIgLib Dataset

The High Performance Wireless Research and Education Network (HPWREN) FIgLib dataset reflects
sequences of wildland fire images as seen from fixed-view cameras on remote mountain tops in
Southern California. As of September 2021, the dataset consists of 315 fires from 101 cameras
across 30 stations occurring between June 2016 and July 2021. Each sequence typically contains
images from 40 minutes prior to and 40 minutes following the start of the fire, serving as binary
smoke/no-smoke labels for each image. The images are 2048x1536 or 3072x2048 pixels in size,
depending on the camera model used, and are spaced approximately 60 seconds apart for a total of
24,800 high-resolution images. The ignition detection and view prior to the ignition are enabled
by a cluster deployment of cameras, where four 90+ degree views stay consistent for years as
360 degrees around a mountain top. The FIgLib dataset can be accessed at the following link:
http://hpwren.ucsd.edu/HPWREN-FIgLib/

3 Methods

3.1 Data Preparation

To avoid out-of-distribution sequences for our machine learning task, we removed fires with black &
white images (N=10), night fires (N=19), and fires with questionable presence of smoke (N=16) from
the dataset (3,700 images removed in total). In addition to binary smoke/no-smoke labels for each
image, the smoke in 144 fires has been manually annotated with bounding boxes and contour masks.
We used images from these 144 annotated fires for training (45.6%, 11,300 images); the remaining
126 fires (9,800 images) are split between the validation and test sets such that the number of images
in each split is roughly equivalent. Additional data pre-processing steps are covered in Appendix 6.1.

3.2 SmokeyNet

Tiling Our goal is the binary classification of images to determine the presence of smoke as early
in the sequence as possible. Training the model with standard CNN techniques by leveraging solely
image labels provides insufficient training signal for the model to identify small plumes of smoke
within the large images. Object detection models using bounding box and contour mask annotations
can better localize the target object using anchors and a regression head [22]; however, these models
require precise annotations, which poses a challenge in our scenario given the amorphous and
transparent nature of smoke.

Consequently, we build upon previous work by tiling the image into 224x224 tiles, overlapping by
20 pixels for a total of 45 tiles [2]. We also generate corresponding binary tile labels: positive if
the number of pixels of smoke in the tile, determined by the filled polygon of the contour mask, is
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Figure 1: The SmokeyNet architecture takes two frames of the tiled image sequence as input and
combines a CNN, LSTM, and ViT. The yellow blocks denote "tile heads" used for intermediate
supervision while the blue block denotes the "image head" used for the final image prediction.

greater than an empirically-determined smoke detection threshold of 250 (0.5% of the total pixels in
the tile). Tile labels provide the entirety of our localized feedback signal; we do not otherwise use the
bounding box or contour mask annotations during training.

Architecture The SmokeyNet architecture, depicted in Figure 1, is a novel spatio-temporal gridded
image classification approach combining three different types of neural networks: a CNN [23], an
LSTM [24], and a vision transformer (ViT) [25]. The input to our model is the tiled raw image and
its previous frame in the wildfire image sequence to incorporate the motion of the smoke. A CNN,
pre-trained on the ImageNet dataset [26], initially extracts representations of the raw image pixels
from each tile of the two frames independently. A ResNet34, a lighter-weight version of the popular
ResNet50 model, is our preferred choice of CNN backbone. Then, an LSTM combines the temporal
information of each tile from the current frame with its counterpart from the previous frame. Finally,
all temporally-combined tiles are fed into a ViT, which incorporates spatial information across tiles
to improve the image prediction.

The outputs of the ViT are spatio-temporal embeddings for each tile, as well as a CLS token
embedding that summarizes representations for the whole image [25]. The CLS token embedding is
passed to an "image head," consisting of three linear layers of output sizes 256, 64, and 1, respectively,
and a sigmoid layer to generate a single prediction for the whole image. Given the modular nature
of each of the components, we can experiment with different approaches to capture spatio-temporal
information while still training the model end-to-end.

Loss The initial component of our loss applies standard binary cross-entropy (BCE) loss between
the outputs of the image head and the ground-truth binary image labels. We can increase the weight
of positive examples when calculating this BCE image loss to trade off precision for higher recall.
We use the empirically-tested positive weight of 5 to achieve more balanced precision and recall
and improve overall accuracy and F1 score. To leverage the localized information provided by the
tile labels, we also apply intermediate supervision to each of the model components [27]. Since the
model’s components, the CNN, LSTM, and ViT, also produce embeddings on a per-tile basis, we pass
each component’s embeddings through individual "tile heads," consisting of three linear layers of
output sizes 256, 64, and 1, respectively, and a sigmoid layer to generate predictions for each tile. We
then apply BCE loss between the outputs of the tile heads and the binary tile labels. To address the
class imbalance in which negative tiles occur more frequently than positive tiles, we weight positive
examples by 40, the ratio of negative tiles to positive tiles.

If I is the total number of tiles, the overall training loss can be summarized as:

loss = BCEimage +
∑I

i {BCECNN
i +BCELSTM

i +BCEV iT
i }

Since we have tile labels for only the training data, we define our validation loss as the average
number of image prediction errors and use this validation loss for early stopping.

3.3 Baselines & Experiments

We experiment with alternate CNN backbones to the ResNet34, including a MobileNetV3Large
[28], MobileNetV3Large with a Feature Pyramid Network [29] to better incorporate spatial scales,
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Model
Params

(M)
Time

(ms/it) A F1 P R
TTD

(mins)

Variants of SmokeyNet:
ResNet34 + LSTM + ViT 56.9 51.6 83.49 82.59 89.84 76.45 3.12
ResNet34+LSTM+ViT (3 frames) 56.9 80.3 83.62 82.83 90.85 76.11 2.94
MobileNet + LSTM + ViT 36.6 28.3 81.79 80.71 88.34 74.31 3.92
MobileNetFPN + LSTM + ViT 40.4 32.5 80.58 80.68 82.36 79.12 2.43
EfficientNetB0 + LSTM + ViT 52.3 67.9 82.55 81.68 88.45 75.89 3.56
TinyDeiT + LSTM + ViT 22.9 45.6 79.74 79.01 84.25 74.44 3.61

ResNet34 (1 frame) 22.3 29.7 79.40 78.90 81.62 76.58 2.81
ResNet34 + LSTM 38.9 53.3 79.35 79.21 82.00 76.74 2.64
ResNet34 + ViT (1 frame) 40.3 30.8 82.53 81.30 88.58 75.19 2.95

ResNet50 (1 frame) 26.1 50.4 68.51 74.30 63.35 89.89 1.01
FasterRCNN (1 frame) 41.3 55.6 71.56 66.92 81.34 56.88 5.01
MaskRCNN (1 frame) 43.9 56.9 73.24 69.94 81.08 61.51 4.18
ResNet34 + ResNet18-3D 38.0 57.5 83.10 82.26 88.91 76.65 2.87

Table 1: Accuracy (A), F1, precision (P), recall (R) and average time-to-detection (TTD) evaluation
metrics on the test set, with 2 frames of input (unless otherwise stated) averaged over 5 runs. Best
results are bolded; second-best results are underlined. Number of parameters (in millions) and
inference time (ms/image) should be minimized for deployment to edge devices.

EfficientNet-B0 [30], and Data Efficient Image Transformer (DeiT-Tiny) [31]. Using the ResNet34
as the backbone, we also experiment with 3 input frames (i.e., two additional frames of temporal
context instead of one) and conduct an ablation study by removing different parts of the model to
evaluate each component’s benefits. Finally, we compare the model’s performance to four alternate
architectures: ResNet50, the standard for image classification models [32]; Faster-RCNN, a standard
object detection model [22]; Mask-RCNN, an image segmentation model leveraging both contour
masks as well as bounding boxes for training signal [33]; and an alternate architecture using a CNN
and a ResNet18-3D CNN that captures spatio-temporal relationships as a replacement to our LSTM +
ViT [34]. Additional training and model implementation details are covered in Appendix 6.2.

4 Results & Discussion

Table 1 reports test evaluation performance for each of the architectures. SmokeyNet delivers on
the objectives of high precision, high recall, fast performance, and low average time to detection,
calculated as the number of minutes until the model correctly predicts the first positive frame of a
wildfire sequence, averaged over all fires. Additional frames of input marginally improve performance
while drastically increasing inference time. Large backbones such as the ResNet34 or EfficientNet-B0
trade off model size and inference time for better accuracy compared to smaller backbones such as
the MobileNetV3Large or MobileNetFPN.

From the ablation study, we observe that the stand-alone CNN or CNN+LSTM models perform
poorly at the task. Adding the ViT to the CNN significantly improves performance with little impact
to inference speed. The SmokeyNet architecture clearly outperforms standard image classification,
object detection, and image segmentation models. The CNN+ResNet18-3D architecture performs
slightly worse than SmokeyNet, but provides another viable alternative if prioritizing model size.

A video of SmokeyNet’s performance on images from the test set can be viewed at this link:
https://youtu.be/cvXQJao3m1k. The model performs well in a variety of real-world scenarios,
correctly identifying apparent smoke plumes while avoiding clouds and haze. However, the model
still makes systematic misclassifications of low-altitude clouds as false positives.

For future work, we will continue improving the performance of SmokeyNet in these difficult
scenarios, particularly incorporating ignition location information and exploring self-supervised
methods using additional unlabeled data. We also aim to reduce the model size for better compatibility
with edge devices using modified hyperparameters, pruning [35], and quantization.
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6 Appendix

6.1 Data Pre-Processing

Model # Fires # Images

Train 144 11.3K
Validation 64 4.9K
Test 62 4.9K

Omitted 45 3.7K

Total 315 24.8K
Table 2: Number of fires and images in the training, validation, and test splits of the FIgLib dataset.
"Omitted" fires include fires with black & white images, night fires, and fires with with questionable
presence of smoke to avoid out-of-distribution sequences.

Additional transformations during data loading improve the performance of our model. We resize
the images to 1392x1856 pixels to improve training and inference speed. We also crop the top 352
pixels of the image to reduce false positives from clouds for additional performance gains. Data
augmentations include horizontal flip, random vertical crop, color jitter, brightness & contrast jitter,
and blur jitter. Finally, images are normalized to 0.5 mean and 0.5 standard deviation as expected by
the deep learning package we used (PyTorch).

One challenge of the dataset is that 1,213 (approximately 20%) of the positive images are missing
contour mask annotations. 280 annotations are missing because the smoke is difficult to see, generally
occurring at the beginning of the fire sequence or at the end, when the smoke has dissipated. 486
annotations are missing contour masks but have bounding box annotations, generally because the
smoke is too small to reasonably outline a fine contour mask. The remaining 447 missing annotations
are randomly spread throughout the fires.

For images with bounding box annotations where contour masks are not available, we determined the
tile labels by filling the bounding boxes as polygons instead of the contour masks. We attempted other
methods to incorporate feedback from images with missing annotations, including using feedback
from only image labels (as opposed to both image and tile labels) and copying contour masks from
the closest available image in the sequence. However, neither of these methods improved model
performance. For future work, we aim to resolve these missing labels for more robust training data.

6.2 Training Details

Hyperparameter tuning was performed over learning rate, architecture, backbone, data augmentation,
dropout, weight decay, smoke detection threshold, resized dimensions, cropped height, and BCE
loss positive weights. Final models were trained using an SGD optimizer with learning rate 0.001
and weight decay 0.001. The batch size used was the larger of 2 or 4 depending on which would fit
on GPU memory and gradient batches were accumulated such that the effective batch size was 32.
Models were trained for 25 epochs using a single NVIDIA 2080Ti GPU; the model with the lowest
validation loss was used for evaluation on the test set.

For baseline models that do not use a ViT as the last architectural component (e.g. ResNet34+LSTM,
ResNet50, ResNet34+ResNet18-3D, etc.), we determine the overall image prediction by passing
the model’s tile predictions into a single fully connected layer with sigmoid activation, outputting
a single prediction for the image. We also experimented with the simple decision rule that if the
prediction for any tile is positive for smoke, the full image is also classified as positive; however, this
resulted in worse performance. Image predictions for object detection models (e.g. FasterRCNN,
MaskRCNN) were determined as positive if the model predicted any bounding box with a confidence
score above the empirically-tested threshold of 0.5.

6.3 Human Performance Baseline

Due to the lack of suitable benchmarks for performance, we measured human performance of smoke
classification on the FIgLib dataset. Participants were three lab members experienced in classifying
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Figure 2: SmokeyNet’s performance per fire on both negative and positive images. Green denotes
a correct prediction; red denotes an incorrect prediction; white denotes images missing from the
sequence. Common false negatives include faint smoke occurring at the start of the fire or dissipating
smoke at the end of the fire sequence. Common false positives include low-altitude clouds and haze.

images for the presence of wildfire smoke. For the experimental setup, 44 fires (50 minus 6 that were
omitted due to erroneous labels following further data cleaning) were randomly selected from the
test set and one image among each of the fires was randomly selected for prediction. Participants
were presented with the images for prediction, each preceded by the previous frame of the image
sequence to replicate the temporal context our machine learning model also receives. The participants
then recorded if they believed wildfire smoke was present in the image. The average accuracy of
the three participants was 85.6% (σ = 2.83%), slightly higher than that of SmokeyNet. Resolving
all systematic false positives from low-altitude clouds would enable SmokeyNet to achieve 85.8%
accuracy and surpass human performance.
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