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Abstract

Geologic carbon storage (GCS) entails injecting large volumes of carbon dioxide
(CO2) in deep geologic formations to prevent its release to the atmosphere. Reser-
voir simulation is widely used in GCS applications to predict subsurface pressure
and CO2 saturation. High fidelity numerical models are prohibitively expensive for
data assimilation and uncertainty quantification, which require a large number of
simulation runs. Deep learning-based surrogate models have shown a great promise
to alleviate the high computational cost. However, the training cost is high as thou-
sands of high-fidelity simulations are often necessary for generating the training
data. In this work, we explore the use of a transfer learning approach to reduce
the training cost. Compared with the surrogate model trained with high-fidelity
simulations, our new transfer learning-based model shows comparable accuracy
but reduces the training cost by 80%.

1 Introduction

We can prevent 90% of industry emissions from reaching the atmosphere by capturing the CO2 at
source and then permanently store them underground. The storage process is known as geologic
carbon storage (GCS). Reservoir simulation is widely used in GCS reservoir management to predict
subsurface pressure and CO2 saturation. However, when used in the context of data assimilation
and uncertainty quantification, high-fidelity numerical models are prohibitively expensive due to the
large number of simulations required. Deep-learning-based surrogate models are emerging as an
effective and efficient alternative to conventional reservoir simulators for GCS applications ( Mo et al.
[2019], Tang et al. [2021a], Tang et al. [2021b], Wen et al. [2021]).

To train a neural network that predicts reservoir responses on a grid consisting of ∼100,000 cells,
thousands of reservoir simulations are usually required, incurring a high training cost. In this work,
we explore the possibility of reducing the training cost by using multi-fidelity data for the training. In
other words, we first use an ensemble of low-fidelity simulations to train the network. The low-fidelity
ensemble embodies the same physics as the high-fidelity models but adopts a lower grid resolution to
reduce the per-simulation computational cost by an order of magnitude. A small number of high-
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fidelity simulations with the original resolution are then employed to train and fine-tune the network.
Note that “high/low fidelity” in this work is used interchangeably with “high/low resolution”.

Such a transfer learning-based approach has been recently applied to subsurface surrogate model
development such as in [Song and Tartakovsky, 2021] for a 2D Gaussian case. The challenges
posed by our target application include the complexity of 3D two-facies geological modeling and
simulation, and the complex well control for CO2 injection. In this work, we apply transfer learning
on 3D recurrent R-U-Net, developed by Tang et al. [2021c], to train a surrogate model for pressure
prediction of a 3D GCS case with bimodal distribution.

2 Surrogate Model with Transfer Learning

Forward Simulation. The GCS problem is simulated as a multi-phase flow problem in porous
media. Mass conservation for each phase and Darcy law are applied to solve the pressure and
saturation. Finite volume formation is applied to solve the problem. In this work, we apply GEOSX
(http://www.geosx.org/) to perform forward simulation. We provide the geological parameters
(permeability, porosity, and etc.) and other modeling parameters (well controls). GEOSX is applied
to generate pressure and CO2 saturation predictions.

3D Recurrent R-U-Net. In this work, we apply a 3D recurrent R-U-Net developed by Tang et al.
[2021c] as surrogate model. 3D recurrent R-U-Net is composed of residual U-Net (R-U-Net) and
convolutional long-short term memory network (3D convLSTM) as shown in Figure 1. The R-U-Net
is applied to capture the spatial correlation between simulation input m (permeability, porosity, etc.)
and simulation output y (pressure, saturation, etc.). 3D convLSTM is applied to capture the temporal
correlation between simulation output in different time steps. The latent features from R-U-Net are
the input for the convLSTM. The feature maps after convLSTM will feed into the decoding net to
generate temporal predictions of reservoir response. We use f to denote the surrogate model, the
prediction can be generated through ŷ = f(m).

Figure 1: Architecture of Recurrent R-U-Net

Workflow for Training with Transfer Learning. The 3D recurrent R-U-Net surrogate model
requires a large number (O(2000)) of high-fidelity simulations (HFS). We apply the idea of transfer
learning to train the network based on the multi-scale simulations. We generate NLFS

r (O(2000)) low-
fidelity simulations (LFS) and NHFS

r (O(100)) HFS. The input for the surrogate model is fine-scale
geological properties m ∈ RNm×1, where Nm denotes the number of model parameters.

The process of surrogate model training includes three steps. First, a 3D recurrent R-U-Net is
constructed as base model fbase with weights wbase. The input is high-fidelity geological parameters
m ∈ RNm×1, and output is ybase. An additional output layer is added after the decoding net of the
base model fbase to map the base model output ybase to LFS data yLFS ∈ RNLFS

output×Nt . The weight for
the additonal layer is wLFS

output. A set of NLFS
r LFS samples are applied to train the network fLFS with

weights {wbase,w
LFS
output}. The second step is replacing the output layer (weights wLFS

output) with a new
output layer (weights wHFS

output). The new output layer maps the base model output ybase to HFS data

yHFS ∈ RNHFS
output×Nt . The trained base model weights wbase from step 1 are applied but fixed in this
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step. NHFS
r HFS samples are used in this step to train the output layer (weights wHFS

output) of the new 3D
recurrent R-U-Net fHFS. The last step is fine-tuning all the weights {wbase,w

HFS
output} of the surrogate

model fHFS. We will apply the training process to generate 3D surrogate model for CO2 storage case.

3 Surrogate Results

Problem Setup. In this work, we consider a model includes two rock types, sand and shale. The
fine-scale (high-fidelity) model is defined on a 64× 64× 28 grid. The 3D facies model is generated
with sequential indicator simulation conditioned to the hard data at nine well locations in Fig. 2.
3D Gaussian realizations are generated with sequential Gaussian simulation. The porosity and
log-permeability are assigned to each block according to the facies and Gaussian realizations using
cookie-cutter method. Figure 2 presents one realization of geomodel, with facies shown in left,
porosity in middle, and log-permeability in right. The low-fidelity model is defined on 32× 32× 28
grid. The porosity and permeability are upscaled with the distance-weighted mean value. There
are Ninj = 4 injectors in the field. CO2 is injected through these four injectors with a constant total
injection rate (2 million metric tons per year) for the whole field. The simulation period is 10 years.
We simulate NLFS

r = 1800 LFS runs and NHFS
r = 100 HFS runs as the training data. In this work,

we train the surrogate model for pressure predictions.

Figure 2: A representative geological realization with facies (left), porosity (middle),
log-permeability (right). The nine wells used to constrain the model are shown in the facies plot.

Training Process. The input for recurrent R-U-Net is composed of porosity and log-permeability
field (two input channel). The dimension of input is Nm = Nx × Ny × Nz × 2 = 68 × 68 ×
28 × 2 = 258, 944. We normalize the porosity and log-permeability by the maximum value. The
output include pressure for 10 time steps (simulation data is sampled per year). We apply the
min-max normalization to transfer data to 0-1 range. The output dimension for LFS surrogate
model is NLFS

output ×Nt = 32 × 32 × 28 × 10 = 286, 720. The output dimension for HFS model is
NHFS

output ×Nt = 64× 64× 28× 10 = 1, 146, 880, where NHFS
output is the number of grid block of HFS.

In the training process, we train the low-fidelity surrogate model fLFS with NLFS
r LFS samples, and

fine tune the high-fidelity model fHFS with NLFS
r LFS samples. The optimization is

[w∗
base, (w

k
output)

∗] = argmin
wbase,wk

output

1

Nk
r

1

Nt

Nk
r∑

i=1

Nt∑
t=1

(||ŷk,t
i − yk,t

i ||
2
2 + λ

1

Ninj

Ninj∑
j=1

||ŷk,t
i,j − yk,t

i,j ||
2
2), (1)

for k = LFS,HFS, where λ denotes the weights for loss in the well locations. The training loss
includes the reconstruction loss and the hard data loss for well locations. The mismatch is calculated
with L2 norm. The network is trained with adaptive moment estimation (ADAM) optimizer [Kingma
and Ba, 2014]. The batch size is set be to 8, and 200 epochs are used to the LFS model. 100 epochs
are used to train the output layer in step 2 and fine tune the model in step 3.

Pressure Fields. We generate a set of 100 new realizations at high fidelity to evaluate the pressure
prediction from surrogate model. We compute the relative error for pressure prediction of each
realization i, written as

ei =
1

NHFS
output

1

Nt

NHFS
output∑
j=1

Nt∑
t=1

|ŷt
i,j − yt

i,j |
(yt

i,j)max − (yt
i,j)min

, (2)
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for i = 1, 2, . . . , 100. The relative error is normalized by the minimum and maximum value of
pressure at each grid block j, time step t for test realization i.

We first train the network with 1800 HFS samples and use the HFS surrogate model f ref
HFS as reference.

Figure 3 presents the pressure fields of 10 realizations for layer 28 at t = 10 year. The upper row
shows the HFS simulation results, the middle show presents the surrogate results from multi-fidelity
training. The bottom row shows the surrogate results from high-fidelity training. We rank these 100
realizations from low relative error to high relative error, and sample 10 realizations in sequence.
For the surrogate results with multi-fidelity training, the relative error for the first realization is
1.62% (the lowest value). The largest relative error is 3.62%. For the reference surrogate results with
high-fidelity training, the errors are 1.50% and 4.05%. Both results show close agreement with HFS
simulations. These 10 realizations are representative and present a large variation. The surrogate
predictions with multi-fidelity training presents reasonable accuracy.

(a) Simulation pressure predictions (psi)

(b) Surrogate pressure predictions with multi-fidelity training (psi)

(c) Surrogate pressure predictions with high-fidelity training (psi)

Figure 3: Pressure maps for HFS (upper row) surrogate results with multi-fidelity training (middle
row), surrogate results with high-fidelity training (bottom row) for 10 test cases at layer 28 at 10 years

Computational Cost. The computational time of building surrogate model includes two parts,
simulation time and network training time. Table 1 summarizes the computational cost of generating
reference surrogate model f ref

HFS and generating surrogate model fHFS with transfer learning. For the
reference surrogate model, 1800 high-fidelity simulations are used to train the model. The total
simulation time for high-fidelity training is 3600 CPU hours. While for multi-fidelity training, only
100 HFS samples and 1800 low-fidelity simulations are required. The total simulation time for
multi-fidelity training is 740 CPU hours, which is around 20% of the simulation time of high-fidelity
ensemble. The multi-fidelity framework significantly improve the computational efficiency of the
training dataset.

Table 1: Computational cost for high-fidelity training and multi-fidelity training

High-fidelity training Multi-fidelity training
GEOSX simulation
(64×64×28)

2 core hours×1800 = 3600
core hours 2 core hours×100 = 200 core hours

GEOSX simulation
(32×32×28) N/A 0.3 core hours×1800 = 540 core

hours
GPU training time
(Nvidia Tesla V100) 11.5 hours 9.3 hours (step 1) + 0.1 hours (step

2)+ 0.3 hours (step 3) = 9.7 hours

4 Conclusions and Discussion

In this study, we used a transfer learning approach to train a 3D recurrent R-U-Net surrogate model
for predicting pressure responses of a geologic carbon storage (GCS) reservoir subjected to CO2

injection. The full model has an original resolution of 64× 64× 28. We trained the neural network
with 1,800 low-fidelity simulations embodying the same physics but with low resolution. The

4



model is then fine-tuned with 100 full-resolution simulations. The resultant surrogate model exhibits
satisfactory accuracy while reduces the training cost by 80%. This suggests that the multi-fidelity
training framework can be applied to surrogate modeling of field-scale GCS projects.
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