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Abstract

To help mitigate climate change, power systems need to integrate renewable energy
sources, such as solar, at a rapid pace. Widespread integration of solar energy
into the power system requires major improvements in solar irradiance forecast-
ing, in order to reduce the uncertainty associated with solar power output. While
recent works have addressed short lead-time forecasting (minutes to hours ahead),
week(s)-ahead and longer forecasts, coupled with uncertainty estimates, will be
extremely important for storage applications in future power systems. In this
work, we propose machine learning approaches for these longer lead-times as an
important new application area in the energy domain. We demonstrate the poten-
tial of several deep sequence learning techniques for both point predictions and
probabilistic predictions at these longer lead-times. We compare their performance
for subseasonal forecasting (forecast lead-times of roughly two weeks) using the
SURFRAD data set for 7 stations across the U.S. in 2018. The results are en-
couraging; the deep sequence learning methods outperform the current benchmark
for machine learning-based probabilistic predictions (previously applied at short
lead-times in this domain), along with relevant baselines.

1 Introduction

Renewable energy resources such as wind and solar are abundantly available in nature and have the
potential to reduce society’s dependence on fossil fuels. However, these resources are variable and
uncertain, posing challenges for integration into a power system which is predicated upon dispatchable
supply. There is therefore a growing need for accurate renewable energy forecasting to enable reliable
integration into electric grids. Solar photovoltaics (PV) systems are experiencing exponential growth
in deployment and the output of PV systems is highly dependent on solar irradiance [1]. A number
of physical and statistical models have been used for making solar forecasts at different timescales
from intra-hour to a few days-ahead [18} 21]]. Statistical methods have been shown to perform
well at forecasting at very short time horizons, with numerical weather prediction models (NWP)
outperforming them in the hours to days-ahead timeframe [[18]].

The works in [[1} [13} 9] 6] show the potential of Long Short-Term Memory (LSTMs) for solar energy
forecasting. Convolution neural network (CNN)-based models that use dilated and causal convolutions
along with residual connections (also referred as Temporal CNNs) were designed specifically for
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sequential modeling [4}[14]. Temporal CNNs have recently been applied to forecasting day-ahead PV
power output, outperforming both LSTMs and multi-layer feed forward networks [[12] . In this work,
we study a significantly longer forecast horizon, and compare Temporal CNNs, Temporal CNNs with
an added attention layer [16]], and the Transformer model [19], against LSTMs.

Probabilistic forecasting provides a distribution over the prediction, this additional knowledge of
uncertainty estimates is an advantage over point forecasting. Knowing about future time peri-
ods of low and high uncertainty in advance can be very useful in planning [23]]. Until recently,
probabilistic forecasting for solar energy had not received as much attention as for other renew-
able energy sources, as observed in [[7]], which introduces probabilistic benchmarks to evaluate
probabilistic methods, which we will utilize in this work. Recently, [23] show how probabilis-
tic models such as Gaussian processes, neural networks with dropout for uncertainty estima-
tion, and NGBoost [8] compare when making short-term solar forecasts. They explored post
hoc calibration techniques for improving the forecasts produced by these models. We now con-
sider NGBoost, i.e., Natural Gradient Boosting algorithm [8]] with a Gaussian output distribution,
to be a machine learning benchmark in this domain, since it showed superior performance for
intra-hour and hourly resolution forecasting [23]. Deep learning-based probabilistic prediction
models are, however, yet to be fully explored [21]. In this paper, we extend the deep learning
point prediction models mentioned above to yield predictions at multiple quantiles (see Figure
[I) as quantile regression is a non-parametric approach to obtain probabilistic forecasts [21] [16].

Most physical models in this domain are based 200{  icied medion
on NWP simulations that traditionally provide
more accurate forecasts at hours to days-ahead s00

lead times [18]]. However, due to their computa-
tional expense, NWP model outputs are updated
less frequently and with coarser resolution at
longer prediction lead times, such as week(s)
ahead. This motivates the need for data-driven
machine learning models that can provide fore- Time:3 days in Harch 2018
casts at longer periods in advance at a finer (1 ) .
hour) resolution (as opposed to e.g., 12 hour Figure 1: Fan plot sh(.)w.mg Fhe best performing (Trans-
resolution in the case of European Centre for former). model’s prediction intervals from 5% to.95%
Medium-Range Weather Forecasts (ECMWF) percentile on three March days at the Boulder station.
model predictions). We train and test only on daylight hours (for relevance to the domain, as in [7]]),
and our forecasts are made at 168 daytime hours ahead. This is an approximately two week lead time,
(depending on the number of daylight hours per day), a prediction lead-time known in the climate
science literature as subseasonal forecasting [20].
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Contributions We propose deep sequence learning for this subseasonal solar forecasting task, and
demonstrate methods that outperform previous machine learning methods applied to solar forecasting.
The results are comparable to the complete history persistence ensemble (Ch-PeEN) benchmark [7]]
in terms of CRPS scores, but better in terms of forecast sharpness.

Pathways to Climate Impact We show the promise of machine learning for longer-term solar
forecasting with probabilistic predictions, an area that has not been sufficiently explored in the
literature. Our encouraging results suggest such methods could play a larger role in future power
system operations, when greater shares of renewable energy resources will require operational
planning at these timescales. For example, these methods could inform the operation of hybrid power
plants with storage capabilities, where information about expected future renewable power generation
would weigh into decisions on storage charging and discharging . Efficient energy planning will
become increasingly important as transportation switches to electric vehicles.

2 Methods

Models We focus on showcasing the potential of three deep multi-variate sequence models: Tem-
poral CNNs, Temporal CNNs with an attention layer, and Transformer, for point and probabilistic
solar irradiance forecasting. We compare them to the NgBoost method [8] that has been shown to



outperform various probabilistic models for short-term solar forecasting [23]] and LSTM, along with
benchmarks from the literature (as described in the Results section).

Ngboost LSTM TCN TCN+Attention || Transformer
SP HC SP HC SP HC SP HC SP HC
Sioux Falls, SD 28.5 | 17.53 || 19.08 | 6.51 29.59 | 18.79 || 28.51 17.54 28.09 | 16.91
Fort Peck, MT 28.02 | 28.8 || 23.21 | 23.83 || 30.02 | 30.85 || 30.66 | 31.48 29.99 | 30.56
Bondville, IL 27.66 | 12.1 17.59 | -0.06 || 29.23 | 14.33 || 29.95 15.2 26.97 | 11.26
Penn State, PA 26.88 | 14.48 || 22.42 | 9.26 || 26.91 | 14.51 || 26.19 | 13.67 2527 | 12.6
Boulder, CO 30.69 | 15.72 || 26.42 | 10.65 || 28.01 | 12.45 || 29.93 14.8 30.79 | 15.95
Desert Rock, NV 28.1 | 40.46 || 22.45 | 35.56 || 25.07 | 37.95 || 29.25 | 41.41 32.23 | 43.68
Goodwin Creek, MS | 31.8 | 18.26 || 24.09 | 8.75 || 31.54 | 17.94 || 30.82 | 17.09 3295 | 194

Table 1: Results of the point forecasting pipeline. Results are in terms of skill scores (%) based on RMSE,
using Smart Persistence (SP) and Hourly Climatology (HC) as the baselines. The higher the skill score, the
better the model.

Temporal CNN (TCN): Temporal CNN is an autoregressive prediction framework (based on the
WaveNet architecture [[14]). It consists of multiple layers of dilated causal convolution filters (as
explained in Figure [2)) that are responsible for learning long term dependencies efficiently [4, [12]].
Temporal CNN with Attention: Attention [3] has been used for sequential modeling and time
series prediction problems [[15)]. We add a self-attention layer (adapted from [24]) on the convolution
maps generated from the Temporal CNN network and observe the prediction outcomes. This enables
the model to “pay attention” to various important parts of the feature maps that can help in making
more accurate predictions.

Transformer: Transformer models have been

adapted for the task of time series forecasting as 0
they work very well with longer sequences [17,

22]]. For this work, we use the encoder structure

of Transformer and we work with a single stack / (L / (L Hidden Laver
of two-headed self attention modules (as it gives D”a”on:1y

the best results) and other layers based on [19]. O/ J) / L / (L O/ l

Probabilistic prediction: For probabilistic Input

forecasts, the above models are modified to out- Figure 2: Dilated kernels as shown in [14}[3]. Figure

put predictions at multiple quantiles (from 5%  ghows how dilations help to increase (exponentially) the
to 95%, as in Figure[))). While the point mod- receptive field of a kernel. This makes the model capable
els are trained with mean-squared-error losses, of learning correlations between data points far apart in
their probabilistic counterparts are trained using the past.

quantile loss.

Output
Dilation=4
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Hyperparameters are tuned on a validation dataset. A fully connected layer at the end of each model is
modified to produce either a single output (for point) or multiple outputs (for probabilistic). Ngboost
is trained with default parameters and 2000 estimators as in [23]]. Along with architectural parameters,
the number of previous timesteps (sequence length) to look at when making the prediction was also
tuned for each of the models. Adding past values of the input variables enable making better forecasts
at longer lead times.

Data We use NOAA’s SURFRAD network [2] that provides the ground-truth solar irradiance and
meteorological measurements from seven sites across the US. Models are trained on measurements
from the years 2016-2017, and then evaluated on the year 2018. Inputs are converted to an hourly
resolution and only the day time values are considered for training and testing of all models (including
benchmarks). We take a ratio of the ground-truth Global Horizontal Irradiance (GHI) (Watts/m?2)
with respect to the “clear sky" GHI value (these are irradiance estimates under cloudfree conditions,
obtained from CAMS McClear Service [[11]]), to produce a clearness index like in [23} 13} [7] that is
used as the prediction label for training. Important predictor variables available with the data such
as solar zenith angle, hour of the day, month of the year, wind, pressure, temperature, and relative
humidity are included, along with the clearness index at the hour (a total of 15 input variables overall).
While trained on the clearness index, the models are evaluated on the GHI.



HC CH-PeEN | Ngboost | LSTM | TCN | TCN+Attention | Transformer

Sioux Falls, SD 123.08 91.49 98.38 94.51 91.68 93.03 87.42
Fort Peck, MT 126.78 80.88 84.6 82.75 78.58 78.28 77.69

Bondville, IL 129.5 103.11 108.63 120.97 | 101.23 100.52 104.71

Penn State, PA 123.93 100.9 10632 | 111.19 | 103.13 102.7 100.52
Boulder, CO 122.26 90.11 95.76 98.96 | 94.29 94.58 91.5
Desert Rock, NV 104.35 4433 49.63 43.56 46.3 45.37 44.99
Goodwin Creek, MS | 124.45 95.66 99.0 105.26 | 97.24 97.97 95.48

Table 2: Results of the probabilistic forecasting pipeline. Results are in terms of CRPS scores. Comparisons are
made with the probabilistic Hourly Climatology (HC) and CH-PeEN benchmarks. The lower the CRPS, the
better the model.

3 Evaluation

We provide the results of our experiments over all 7 SURFRAD stations for the test year (2018) in
Table E] and Table @ The three benchmarks from the solar energy literature (derived from [7]]) are:
Smart Persistence (SP): A model that assumes the clearness index (ratio of GHI/clear-sky GHI) at
time t-+lead-time to be the same as at time ¢, and uses that to obtain the irradiance at ¢+lead-time.
This is a common benchmark from the short-term point forecasting literature, which we would not
expect to perform well at longer forecast lead times, but include for the sake of completeness.
Hourly Climatology (HC): A model that assigns the irradiance at a certain hour in 2018, to be the
average of all irradiance values at the same hour of every day in the training data. For the probabilistic
forecast evaluation, we do not use the average but the cumulative distribution function (CDF) over
these values.

Complete history Persistence ensemble (CH-PeEN) CH-PeEN is very similar to the prob-
abilistic version of Hourly Climatology, except that a CDF is taken over the clear-
ness indices (and not the irradiance itself) from the training data at the same hour.

The evaluation metrics for point forecasting are skill scores: the
percentage improvement of the RMSE (root mean squared er-
ror) of each learned model (TCN, TCN+attention, Transformer,
Ngboost and LSTM) over that of the benchmark (Smart Persis-
tence and Hourly Climatology, respectively). For probabilistic
forecasting, we use CRPS (Continuous Ranked Probability
Score) scores to compare the models. Intuitively, CRPS mea-
sures the area between the predicted and the observed CDF, the
observed (true) CDF being a step function at the observation w |
[23]. CRPS is a widely used metric for evaluating probabilistic o]
forecasts as it gives a single score that takes both reliability § o]

and sharpness into account [10]. Reliability looks at the statisti-
cal consistency between the forecast distribution and observed
distribution, while sharpness looks at the concentration (nar-
rowness) of the forecast [7,[10]. TN T D

Overall, the three models (TCN, TCN+Attention, Transformer)
outperform Ngboost, LSTM, and the hourly climatology for
both point and probabilistic forecasts. Transformer outperforms
TCN and TCN+Attention for probabilistic forecasts for most
stations, except for Desert Rock, where the abundance of clear sky days in the desert make improve-
ments difficult. Ngboost is close to the proposed deep learning methods in point prediction but falls
behind in probabilistic evaluation. The CH-PeEN benchmark consistently performs very close to
the best performing probabilistic models. To investigative this, we plot the reliability and sharpness
diagrams for the station Penn State in Figure[3] We see that the TCN methods and Transformer
have more sharpness (as their curves are lower) in their forecasts than CH-PeEN, even though it has
comparable CRPS and reliability. The strong performance of CH-PeEN suggests that incorporating
features based on the climatology into the machine learning models could further boost performance.

Figure 3: Reliability and Sharpness
plots.



4 Discussion

We show the valuable potential of deep learning methods for subseasonal solar irradiance forecasting.
Temporal CNNSs are a faster alternative to training LSTMs, and in this application they show superior
performance over LSTMs and Ngboost, especially for probabilistic forecasts. Attention mechanisms
proved useful when used in conjunction with TCNs, and even more so with the Transformer. Notably,
the observed performance did not require any NWP inputs. Future steps would be to include the NWP
model ensemble outputs (available for standard forecast periods of ~7-10 days lead-time) as input
features to our existing deep models to potentially enhance performance. We hope this paper will
encourage future work leveraging machine learning for long-term point and probabilistic forecasting,
not only for solar power, but also for other renewables and applications mitigating climate change.
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