

Short-term Solar Irradiance Forecasting from Sky Images

Hoang Chuong Nguyen, Miaomiao Liu Australian National University

NeurIPS 2021 Workshop Tackling Climate Change with Machine Learning

Background

> Global warming have become critical issue.

Copied from website <a href="https://www.gettyimages.com.au/detail/photo/polar-bear-repulse-bay-nunavut-canada-royalty-free-image/599854185?utm_medium=organic&utm_source=google&utm_campaign=iptcurl. All copyrights belong to photographer Paul Souders. Please do not redistribute it.

Background

- Forecasting: forecast future solar irradiance using historical sky images and auxiliary data.
 - Deterministic intra-hourly predictions.
 - Future solar irradiance diverse over a relatively long-term (> 1 hour).

Example of forecasting: Use data in the past 1 hour to predict solar irradiance for the next 4 hours

Methodology

- We propose two models for solar irradiance forecasting:
 - 1. Deterministic forecasting model.
 - 2. Stochastic forecasting model.
- Each model contains three components:
 - 1. A nowcasting model
 - 2. An auxiliary LSTM
 - 3. A model for predicting future sky images.

The nowcasting model

- Estimate solar irradiance at a specific timestep using:
 - Sky image
 - Auxiliary data.

The auxiliary LSTM model

Has a LSTM structure

 Aim to predict future auxiliary data autoregressively given the historical ones.

The PredRNN model [1]

Spatial-temporal model

 Aim to predict future sky images autoregressively given the historical ones.

^[1] Wang, Y., Long, M., Wang, J., Gao, Z. and Yu, P.S., 2017, December. Predrnn: Recurrent neural networks for predictive learning using spatiotemporal lstms. In *Proceedings of the 31st International Conference on Neural Information Processing Systems* (pp. 879-888).

The deterministic forecasting model

- Contains three components:
 - The nowcasting model
 - The auxiliary LSTM
 - The PredRNN model
- Prediction process:
 - Step 1: PredRNN predicts future images
 - Step 2: Auxiliary LSTM predicts future auxiliary data
 - Step 3: The nowcasting model predicts future solar irradiance.

Loss function

$$\mathcal{L}_{det} = \frac{1}{M+T-1} \left(\sum_{i=1}^{M+T-1} \left| \left| p_{i+1} - \hat{p}_{i+1} \right| \right|_1 + \alpha \left| \left| x_{i+1} - \hat{x}_{i+1} \right| \right|_1 \right)$$
Solar irradiance loss Image loss

Where:

- p_{i+1} and \hat{p}_{i+1} are ground-truth and predicted solar irradiance at timestep i+1
- x_{i+1} and \hat{x}_{i+1} are ground-truth and predicted image at timestep i+1

The stochastic forecasting model

- Contains three components:
 - The nowcasting model
 - The auxiliary LSTM
 - The VPEG model
- VPEG model [2] aims predicts a distribution of future sky images.
- Contain three phases:
 - Expert samples retrieval
 - Training phase
 - Generation phase

Retrieval phase

- Use the output of the last hidden layer of the nowcasting model.
- Each sequence is represented as a sequence of features f.
- Perform K-nearest neighbor search to retrieve K expert examples.

 ${\cal K}$ retrieved expert samples

Training phase

The prior mean is also predicted

Generation phase

Use the prior distribution (instead of the posterior distribution)

The stochastic forecasting model

- Prediction process:
 - Step 1: VPEG generates multiple future images.
 - Step 2: Auxiliary LSTM predicts future auxiliary data.
 - Step 3: The nowcasting model predicts multiple future solar irradiance.

Loss function

```
Loss = \lambda_1image loss + \lambda_2expectation loss + \lambda_3variance loss + \lambda_4solar loss
```

```
image loss = \left| \left| \text{best predicted image} - \text{ground truth image} \right| \right|_{2}^{2}
```

expectation loss =
$$\left| | \text{prior mean} - \text{posterior mean} | \right|_{2}^{2}$$

variance loss = $\left| \left| \text{variance of predictions } - \text{variance of expert samples} \right| \right|_{2}^{2}$

 $solar loss = ||best predicted solar irradiance - ground truth solar irradiance||_1$

Experiment setups

- Golden, Colorado Dataset:
 - Contains sky images and auxiliary data recorded from 2004 to 2016.
 - Auxiliary data contains date, time, clear-sky irradiance, azimuth angle and zenith angle
 - Data in 2015 and 2016 is used as test sets.

- Evaluation metrics:
 - Normalized mean absolute percentage error (nMAP):

$$nMAP = \frac{1}{N} \sum_{n=1}^{N} \frac{|p_n - \hat{p}_n|}{\frac{1}{N} \sum_{n=1}^{N} p_n} \times 100$$

• Diversity: Average L1 difference of each pair of predictions.

Result

	nMAP									
	Test 2015				Test 2016					
	+1h	+2h	+3h	+4h	+1h	+2h	+3h	+4h		
Siddiqui [3]	17.9	25.2	31.6	39.1	16.9	25.0	31.9	39.5		
Our deterministic model	21.6	25.7	30.1	35.6	19.2	23.3	27.2	32.7		
Our stochastic model (best prediction)	19.7	21.2	22.5	27.8	17.4	19.1	21.2	25.5		

- → Our deterministic model outperform the state-of-the-art model for predictions in the far future.
- → The best prediction of the stochastic model better than the that of the deterministic models.

[3] Siddiqui, T.A., Bharadwaj, S. and Kalyanaraman, S., 2019, January. A deep learning approach to solar-irradiance forecasting in sky-videos. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 2166-2174). IEEE.

Diversity in the predictions of the stochastic model

	Diversity									
	Test 2015				Test 2016					
	+1h	+2h	+3h	+4h	+1h	+2h	+3h	+4h		
Our stochastic model	77.4	91.5	97.5	100.2	70.1	82.2	88.0	90.0		

- → The diversity increases as we predict further into the future.
- → Our stochastic model is able to capture uncertainties in the future.

Short-term Solar Irradiance Forecasting from Sky Images

Hoang Chuong Nguyen

Miaomiao Liu

