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Background

» Global warming have become critical issue.
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Producing solar power is not fully manageable due to the
unstable environmental factors.
= Solar power forecasting helps the operation to be more stable.




Background

* Forecasting: forecast future solar
irradiance using historical sky images
and auxiliary data.

* Deterministic intra-hourly predictions.

e Future solar irradiance diverse over a
relatively long-term ( > 1 hour).
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Methodology

* We propose two models for solar irradiance forecasting:
1. Deterministic forecasting model.
2. Stochastic forecasting model.

* Each model contains three components:
1. A nowcasting model
2. An auxiliary LSTM
3. A model for predicting future sky images.



The nowcasting
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The auxiliary LSTM model

* Has a LSTM structure

e Aim to predict future
auxiliary data
autoregressively given
the historical ones.




The PredRNN model [1]

* Spatial-temporal model

* Aim to predict future
Sy images CoT T L L]
autoregressively given
the historical ones.
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[1] Wang, Y., Long, M., Wang, J., Gao, Z. and Yu, P.S., 2017, December. Predrnn: Recurrent neural networks for predictive learning using spatiotemporal Istms. In Proceedings of the
31st International Conference on Neural Information Processing Systems (pp. 879-888).



The deterministic
forecasting model

e Contains three components:
* The nowcasting model
e The auxiliary LSTM
* The PredRNN model

* Prediction process:
e Step 1: PredRNN predicts future images

e Step 2: Auxiliary LSTM predicts future
auxiliary data

* Step 3: The nowcasting model predicts
future solar irradiance.
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Loss function
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Where:
* p;+1 and P; .1 are ground-truth and predicted solar irradiance at timestep i + 1
* X;j1+1 and X; 1 are ground-truth and predicted image at timestep i + 1



The stochastic forecasting model

e Contains three components:
* The nowcasting model £

e The auxiliary LSTM
* The VPEG model
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[2] Xu, J., Xu, H., Ni, B., Yang, X. and Darrell, T., 2020, November. Video prediction via example guidance. In International Conference on Machine Learning (pp. 10628-10637). PMLR.




Features representation of
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Generation phase

Use the prior distribution (instead of the posterior distribution)

fi

Q
Fl:K,i

\

h;
Q L
H1:K,i§—
- C_) T|-\ Prior 1
o model i+l
Feature prior mean
encoder | Hi .11
g Variance o
encoder t+1
variance

A

N (Hiv1,0i41)

Prediction
model

=t Image
§ D § encoder

Skip con+
nection

21,i+1>
2241

2V i+1»

Random variables




The stochastic forecasting model

* Prediction process:

* Step 1: VPEG generates
multiple future images.

e Step 2: Auxiliary LSTM
predicts future auxiliary data.

* Step 3: The nowcasting model

predicts multiple future solar
irradiance.
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Loss function

Loss = A{image loss + A,expectation loss + A;variance loss + A,solar loss

: : : : 2
image loss = ||best predicted image — ground truth image| | 5
. . _ 2
expectation loss = ||pr10r mean — posterior mean| |2
: : _— : 2
variance loss = ||Var1ance of predictions — variance of expert samples| | X

solar loss = ||best predicted solar irradiance — ground truth solar irradiance| |1



* Golden, Colorado Dataset:

* Contains sky images and auxiliary data recorded from 2004 to
2016.

* Auxiliary data contains date, time, clear-sky irradiance, azimuth
angle and zenith angle

e Datain 2015 and 2016 is used as test sets.

Experiment

11:00

setups

e Evaluation metrics:
* Normalized mean absolute percentage error (nMAP):

N 5
nMAP = Ly 1Pl
N n=1N Zn:l Pn

» Diversity: Average L1 difference of each pair of predictions.




Result

_

Test 2015 Test 2016
+1h +2h +3h +4h +1h +2h +3h +4h
Siddiqui [3] 17.9 25.2 31.6 39.1 16.9 25.0 31.9 39.5
Our deterministic model 21.6 25.7 30.1 35.6 19.2 23.3 27.2 32.7

Our stochastic model

. . 19.7 21.2 22.5 27.8 17.4 19.1 21.2 25.5
(best prediction)

=» Our deterministic model outperform the state-of-the-art model for predictions in the far future.

=» The best prediction of the stochastic model better than the that of the deterministic models.

[3] Siddiqui, T.A., Bharadwaj, S. and Kalyanaraman, S., 2019, January. A deep learning approach to solar-irradiance forecasting in sky-videos. In 2019 IEEE Winter Conference
on Applications of Computer Vision (WACV) (pp. 2166-2174). IEEE.



Diversity in the predictions of the stochastic model

Test 2015 Test 2016
+1h +2h +3h +4h +1h +2h +3h +4h
Our stochastic model 77.4 91.5 97.5 100.2 70.1 82.2 88.0 90.0

=» The diversity increases as we predict further into the future.

=» Our stochastic model is able to capture uncertainties in the future.
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