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Abstract

Forecasting future spatial patterns in biodiversity due to shifts in climate is chal-
lenging due to nonlinear interactions between species as recorded in their pres-
ence/absence data. This work proposes using variational autoencoders with side
information to identify low-dimensional structure in species’ joint co-occurrence
patterns, leveraging this simplified representation to provide multivariate predic-
tions of their habitat extent under future climate scenarios. We pursue a latent space
clustering approach to map biogeographical regions of frequently co-occurring
species and apply this methodology to a dataset from northern Belgium, generat-
ing predictive maps illustrating how these regions may expand or contract with
changing temperature under a future climate scenario.

1 Introduction

Projecting trends in global biodiversity amidst anthropogenic climate change is a challenging problem
due to uncertainties in climate forecasts, nonlinear relations between species’ fitness and temperature,
and climate-mediated network effects between species [Van der Putten et al., 2010, Garcia et al.,
2018]. The disruption of established patterns of species-species interactions threatens to sever critical
links required by ecosystems to function properly. For example, changes to the timing and seasonality
of ecosystem events such as predation and pollination are likely to be disrupted by climate change
[Bartomeus et al., 2011] with concomitant ecosystem-wide effects. Historically, these second-order
effects have been challenging to accommodate in empirical species distribution models and thereby
lessened the value of existing ecological forecasts which were often dominated by univariate models
[Sinclair et al., 2010, Elith et al., 2011]. Unfortunately, past research has shown that omission of
interactions between species can compromise the validity of species’ abundance forecasts under future
climate change [Mod et al., 2015]. Over the past several decades, collection of data tabulating the
co-occurrence of multiple species has driven the development of empirical joint species distribution
models. A shared commonality amongst several previous research efforts in statistical ecology
[Pollock et al., 2014, Taylor-Rodríguez et al., 2017, Tikhonov et al., 2017, Krapu and Borsuk, 2020]
is that these models account for species co-occurrence in a linear fashion, and thereby potentially
limit the degree to which more complicated covariance structures may be analyzed.

Our interest in this work is to explore the usage of deep generative models for the purpose of joint
species distribution modeling. In particular, we seek to analyze the suitability of using a variational
autoencoder (VAE) for identifying meaningful low-dimensional structure from plant species pres-
ence/absence data with relatively large (K ≈ 2500) dimension. We use this learned representation
as an embedding space for application of clustering algorithms to identify biogeographical regions
with strong species assemblage covariance patterns. Locations assigned to the same clusters in the
embedding space also share strong correlation patterns in geographic space and appear to cleanly
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represent biologically meaningful ecoregions shared requirements across species for survival and
propagation. Furthermore, we correlate estimates of per-location latent variables with exogenous
variables including annual rainfall and temperature, allowing us to provide forecasts for the expansion
and contraction of these regions under increased temperature as supplied by the predictions from the
MIROC-ESM model within the Coupled Model Intercomparison Project, version 6 (CMIP6).

We adopt the standard framework for describing variational autoencoders as reviewed in Kingma
and Welling [2019] and clarify that we are interested in constructing a probability model p(x, z)
over vector-valued random variables X,Z which represent, respectively, the K-dimensional binary
vector x of species presence or absence and the corresponding latent vector Z ∼ N (0, IL) which is a
real-valued latent representation of x in a low dimensional space. As is standard when working with
binary data, we use a Bernoulli decoder model pθ such that pθ(x|z) =

∏K
k p̂

xk

k and (p̂1, ..., p̂K)T =
fθ(z) with fθ : RL → [0, 1]K implemented as a neural network with weight vector θ. Rather
than jointly conduct inference for the parameters θ and the latent variables Z directly, amortized
inference (with regard to z) is employed via the encoder model qφ to approximate the posterior
distribution pθ(z|x) as qφ(z|x) = N (µφ(x), vφ(x)) with neural networks µφ : [0, 1]K → RL and
vφ : [0, 1]K → RL>0 providing the approximate posterior mean and posterior variance of z|x, albeit
at the extra computational expense of estimating the encoder parameters φ.

2 Experiments

2.1 Species presence data

The observational analyzed in this study is predominantly drawn from the Florabank1 biodiversity
database [Van Landuyt et al., 2012] which records species presence and absence as catalogued from
historical records of plant observations in Flanders, Belgium (Figure 1A) compiled since 1800. Most
of the records in the database are derived from a systematic, grid-based survey of wild plant species.
The version of the dataset used in our analyses contains data for K = 2, 448 distinct species recorded
acrossN = 12, 647 spatial cells with area of one square kilometer each. The data exhibit a substantial
negative imbalance, with presences reported for only 5% of the approximately 30 million potential
presences. 95% of grid cells contained fewer than 288 species observed, while 95% of species were
present in fewer than 4,418 grid cells.

2.2 Generative model

To analyze the Florabank1 data, we partitioned our data into subsets of 70% training, 15% validation,
and 15% test. We implemented a variational autoencoder with symmetric encoder and decoder
models using fully-connected layers, skip connections, batch normalization, and a sigmoid activation
function for the final decoder layer. The training objective function for this model is the sum of a
Gaussian KL-divergence term and class-weighted binary cross-entropy to address class imbalance. It
can be written in terms of a single observation x and predicted presence probability vector p̂ = fθ(z)
as

L(x, p̂) = β ·DKL (N (µφ(x), vφ(x))||N (0, IL))−
K∑
k

xk log p̂k + λ(1− xk) log(1− p̂k) (1)

with weighting parameter λ to account for true/false imbalance in the dataset and parameter β
controlling trade-off between Gaussian regularization and reconstruction error after Higgins et al.
[2017]. To identify a suitable model structure, we performed a grid search over 1440 combinations
of hyperparameters and architectures (Appendix A1), assessing model performance with Tjur’s R2

[Tjur, 2009] as applied to VAE reconstruction applied to the held-out test subset. Each model was
trained until decreasing validation subset R2 was observed for multiple consecutive epochs. We
found that the reconstruction fidelity was maximized at R2 = 0.83 with a latent dimension of 32, 2
layers with 256 hidden units each, λ = 10, and β = 1. We made use of this model for all following
analyses in this study.

2.3 Region mapping via latent space clustering

As the goal of this work is to generate biogeographical maps of species’ distributions, we used
the encoder model from the previously described training procedure to encode all N observations
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Figure 1: Biogeographical regions obtained with embeddings from the VAE latent space. Each
color in the subplots above corresponds to a distinct cluster identified from the latent or embedded
representation of the data. Note that colors are not aligned across subplots.

into the L-dimensional latent space such that un = µφ(zn) by applying K-means clustering as
implemented in scikit-learn [Pedregosa et al., 2011] with M = 15 clusters to the N × L matrix
U = [u1

T , ...,un
T ]. This choice of M clusters was chosen subjectively; currently, no systematic

comparison has yet been performed to identify an optimal number of clusters; future iterations of
this work could investigate nonparametric clustering techniques making use of the Dirichlet process
mixture model [Ferguson, 1973] or the silhouette score [Rousseeuw, 1987] to identify an appropriate
value. Maps indicating the cluster assignment for each point in geographical space are provided in
Figure 1C; for comparison, similar mappings were generated using UMAP [McInnes et al., 2018]
and latent Dirichlet allocation [Blei et al., 2003] to yield embedded representations. These results are
provided and described in Appendix A2.

To relate the latent space clustering to actual collections of co-occurring species, we calculated, for
each cluster centroid in the latent space, the resulting species presence probability vector implied by
the decoder model. The top occurring species for each cluster are shown in Table 1 for three clusters.
There appears to be at least a modest degree of easily understandable co-occurrence structure in these
clusters; for example, the third cluster/region rates multiple plants as lowest scoring which typically
only appear in a sandy coastal environment such as Armeria maritima and Suaeda maritima.

2.4 Future projections under climate change

To predict how anticipated alterations to long-term averages in temperature might affect the spatial
distribution of biographical regions, we used linear regression with ridge regularization to obtain a
decomposition of U = Y B+W where Y denotes a N ×P matrix of P side information variables or
covariates observed at N locations, B is a P ×L matrix of regression coefficients linking coordinates
in the embedding space to the covariates, and W contains residual terms representing variation in the
latent embeddings which cannot be captured with this linear model. The covariates we used include
mean annual temperature, rainfall, elevation, slope, density of human settlement, and indicators
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Table 1: High- and low-probability species for three biogeographic region clusters

Region 1
High probability Low probability

Crataegus macrocarpa Juncus tenageia
Mentha rotundifolia Carex reichenbachii
Scabiosa columbaria Andromeda polifolia

Eranthis hyemalis Myriophyllum heterophyllum
Amaranthus graecizans Littorella uniflora
Anthriscus cerefolium Rhynchospora fusca

Rubus lindleianus Leucojum aestivum
Rubus vestitus Wahlenbergia hederacea

Rubus rudis Euonymus fortunei
Cydonia oblonga Rhododendron luteum

Region 2
High probability Low probability

Botrychium matricariifolium Mentha villosa
Ranunculus acris Euphorbia prostrata
Rumex acetosella Prunus persica

Cynosurus cristatus Ranunculus tripartitus
Cardamine pratensis Campanula poscharskyana

Anthoxanthum odoratum Digitalis lutea
Vicia lutea Veronica spicata

Hieracium umbellatum Leucojum aestivum
Campanula rapunculus Cosmos bipinnatus

Centaurea jacea Corylus ma

Region 3
High probability Low probability

Equisetum sylvaticum Atriplex laciniata
Myosotis nemorosa Diphasiastrum tristachyum
Geranium versicolor Malva pusilla

Carex strigosa Ammophila arenaria
Polystichum aculeatum Armeria maritima

Dactylis polygama Euphorbia paralias
Helleborus viridis Vicia faba
Gagea spathacea Suaeda maritima

Anemone ranunculoides Wahlenbergia hederacea
Luzula forsteri Thlaspi caerulescens

for the presence of surface water. Further details are provided in Appendix A3; we note that the
fraction of variance in the latent embeddings explained by the covariates is approximately 8%. We
then constructed a future covariate matrix Yf by replacing current mean annual temperature values
for the study domain with forecasts of the same quantity for the period 2021-2040 under the SSP5
scenario as simulated via the MIROC-ESM model [Watanabe et al., 2011]. This scenario projects
increases of roughly 1.0◦ to 2.0◦ C. across the spatial extent of the Florabank1 database. We then
calculated the future Uf = YfB +W and then classified the new values in Uf with the pre-existing
K-means clustering algorithm, thereby assigning the new embedding points to clusters identified
with the current-day data. Maps indicating the extent of each biogeographical region for current-day
settings as well as the future scenario are shown in Figure 1C.

2.5 Limitations

As a report on our intermediate findings, we note several shortcomings to be addressed in future
iterations of this work. Our choice of the standard unit Gaussian prior distribution for the VAE latent
space is not well-suited to clustering as it does not favor clear demarcations between groupings of
points. We would like to use a more suitable prior distribution after Dilokthanakul et al. [2017] which
would also allow for clustering within the VAE framework. Additionally, a small portion of the
variation in latent space embeddings is captured by the environmental predictor variables, suggesting
that we should explore using a higher-capacity model for this secondary prediction task and/or obtain
additional covariates.

3 Discussion and closing remarks

As indicated in Figure 1B, the effects of changing temperature are varied for the different biogeo-
graphical regions. The pre- and post-change spatial patterns of region label retain their rough overall
relative position in the spatial domain, but exhibit substantial expansion or contraction. For example,
we see that Region 5 shrinks from having a substantial presence over north-central Flanders to only a
small remaining region on its northern border. Conversely, Region 1 grows sub substantially from a
foothold in the southeast corner of the region to encompass much of the eastern part of Flanders.

As our predictions for the spatial extent of different biogeographical regions is conducted primarily
through adjust covariates in the second-stage linear model, the quality of the generated forecasts is
highly dependent upon the the representative properties of the predictor variables with regard to the
true underlying biological processes. It is virtually certain that, in at least some of these predictions,
variations in temperature translate into shifts in regional extent primarily because temperature covaries
strongly with unobserved quantities such as hillshade prevalence or soil type which are the actual
drivers of biodiversity are unlikely to change as dramatically with climate change. Further effort in
this line of analysis must be directed towards including a comprehensive set of explanatory variables
for this purpose.

In light of the challenges posed by this type of analysis, we are greatly encouraged by finding
spatially cohesive and clearly meaningful biogeographical regions automatically from data using an
unsupervised approach, and we anticipate that further research in this direction will aid researchers in
identifying species co-occurrence patterns that extend beyond simple linear, pairwise interactions. We
anticipate that analyses similar to those presented in this work will become important for analyzing
large biodiversity datasets which are now becoming more common in ecology. We also opine that
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such ecological data is fertile ground for methodological advances in machine learning due to its
geospatial, high-dimensional and semistructured nature.
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Appendix

A1. Hyperparameter search

In creating our variational autoencoder, we performed an exhaustive search over the following
settings: latent dimension - {8, 12, 16, 24, 32}, number of hidden units - {128, 256, 512, 1024}, β -
{1.0, 2.0, 5.0}, λ - {1.0, 2.0, 5.0, 10.0}, number of layers - {1, 2, 3, 4, 6, 8}. The parameter settings
maximizing validation Tjur’s R2 were 32, 1.0, 10.0, and 2 respectively. This model had 1,282,512
parameters and was trained to completion in 55 epochs requiring approximately 50 seconds of training
on an Nvidia Titan X GPU with Adam (η = 0.01). These models were implemented in TensorFlow
2.4.1.

A2. Comparative embedding results

As a visual comparison with the latent space embeddings obtained with the variational autoencoder
described in the main body of the text, we also applied K-means clustering to low-dimensional
representations of the original dataset obtained using UMAP and latent Dirichlet allocation (LDA).
These results are presented in Figure 2. We used the implementation of UMAP from the umap-learn
Python package (version 0.5.1) and the online variational Bayes implementation of LDA posterior
inference from scikit-learn. In each case, 15 clusters were used. Both UMAP and LDA, we used
an embedding space with 32 dimensions or topics respectively, analogous to the latent dimensions of
the VAE.

A3. Linear model covariates

We employed the covariates for our second-stage linear model from multiple sources of data regarding
elevation, surface water, human settlement, and geology. We obtained gravimetric data from the
Royal Observatory of Belgium’s website, tabulating measurements of Earth’s gravitational constant
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Figure 2: Biogeographical regions obtained with clusters calculated with embeddings from UMAP
and LDA. Each color in the subplots above corresponds to a distinct cluster identified from the latent
or embedded representation of the data. Note that colors are not aligned across subplots.

g at approximately 58,000 locations in Belgium [Verbeurgt et al., 2019]. To assign these values
to our grid cell-indexed locations, we used nearest-neighbor interpolation. This data was used to
provide a continuous measure of subsurface geology over the study region. We also incorporated
information about the average elevation and slope for each grid cell as obtained from the Shuttle Radar
Topography Mission [NASA JPL, 2013]. We incorporated two sources of information regarding
human settlement; the first is the Global Human Settlement Layer [Pesaresi and Freire, 2016] which
categorizes every square kilometer into an ordinal scale of 1, 2, and 3 for rural, urban, and dense
urban center respectively. We used this ordinal scale without modification. To augment this data, we
also used the Corine land use/land cover layer for surface imperviousness. [Buttner et al., 2004]. As
availability of moisture and surface water plays a major role in determining ecological niches available
to plant species, we used the wetness probability index from the Copernicus Land Monitoring Service
[European Environment Agency, 2018] which assigns each location a score of 0–100 corresponding
to the pixel’s estimated wetness. We discretized this dataset into values indicating that the original
value falls within one of three intervals: 10–30, 30–100 and 100. With the last category corresponding
to permanent water. For all variables used, we computed the zonal mean with regard to the individual
rasters. Each Florabank1 grid cell was used as a zone and the averaging was conducted over each
raster cell which the grid cell touched.
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