Global ocean wind speed estimation with CyGNSSnet
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Abstract

The CyGNSS (Cyclone Global Navigation Satellite System) satellite system mea-
sures GNSS signals reflected off the Earth’s surface. A global ocean wind speed
dataset is derived, which fills a gap in Earth observation data, will improve cyclone
forecasting, and could be used to mitigate effects of climate change. We propose
CyGNSSnet, a deep learning model for predicting wind speed from CyGNSS
observables, and evaluate its potential for operational use. With CyGNSSnet,
performance improves by 29% over the current operational model. We further
introduce a hierarchical model, that combines an extreme value classifier and a
specialized CyGNSSnet and slightly improves predictions for high winds.

1 Introduction

The NASA CyGNSS (Cyclone Global Navigation Satellite System) is a constellation of eight
microsatellites with the aim of improving hurricane intensity forecasts [1,[2]. CyGNSS picks up the
signals from global navigation system satellites such as GPS and BeiDou, scattered off the Earth’s
surface. These reflected signals encode the ocean surface roughness, and thus the wind speed [3].
GNSS signals are only insignificantly affected by clouds and precipitation, and are thus suitable for
remote sensing in adverse meteorological conditions [4]. CyGNSS covers tropical and subtropical
regions (£35° latitude) with an average revisit time of seven hours.

The CyGNSS wind speed dataset will be useful to mitigate the effects of climate change. Like other
extreme weather events, cyclones are expected to increase in frequency and intensity in a warming
climate, requiring improved forecasts [5]. Offshore wind turbines are a major renewable energy source
with a projected installation of 205 GW capacity in the coming 10 years [6]. Global observations
can help to better understand the relation between climate change, atmospheric conditions, and wind
speed [7]. A wind atlas can be useful for identifying future offshore park locations [8]. Knowledge
of extreme winds is beneficial for turbine safety engineering [9].

The main measurement in GNSS reflectometry is the Delay Doppler map (DDM), a 2D data array
mapping the cross-correlation power of the original and the reflected GNS signal across bins of time
delay and Doppler frequency shift. Wind speed retrieval algorithms have been successfully developed
for CyGNSS data [[10]. However, the algorithms are still being evaluated for field conditions and
may contain undiscovered biases. Both for a previous mission with the TechDemoSat-1 satellite [11]],
as well as for CyGNSS [[12} [13], it has been demonstrated that a feed forward neural network can
estimate wind speed better than the conventional retrieval approach [11]. Convolutional networks
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have been used to extract features from DDMs [14]]. The evaluation on a large CyGNSS test set
showed potential for operational use, with challenges at predicting high wind speeds [[15]].

We propose CyGNSSnet, a deep learning framework to predict wind speed from CyGNSS observa-
tional products using supervised learning. In this paper, we present our methodology and critically
assess the performance of CyGNSSnet. Our focus is on extreme value prediction and potential
operational use.

2 Methods

2.1 CyGNSS dataset

We use version 2.1 of the CyGNSS data set [[16]], covering 1 January 2018 — 20 February 2019. To
exclude low-quality samples, we filter samples with a set of conditions, for details, see Appendix [A-T]
We use the first 215 days (7.2 x 10® samples) for training, the following 75 days (4.7 x 10° samples)
for validation, and the remaining 127 days (8.8 x 10% samples) as a blind test set. The wind speed
distribution is comparable across the three datasets, and the good quality samples are clustered in
time. For details see Appendix[A-2]

Each sample contains the bistatic radar cross section (BRCS) DDM [110,[17], a 17 x 11 pixel 2D data
array that is treated like an image. Besides ancillary parameters are provided that are related to the
measurement geometry, satellite status, and features processed from DDMs. For CyGNSSnet, we
select 10 ancillary parameters in a data-driven way, for details, see Appendix [A.3]and Table[S2}

The global ocean wind speed labels for supervised learning are obtained from ERAS reanalysis data
[L8] and interpolated to match the CyGNSS specular point coordinates. If samples are labeled with
the same wind speed due to limited spatiotemporal resolution, we randomly select one of them for
training. Note that this approach implicitly assumes that the wind speed is uniform over the entire
spatial domain covered by the DDM.

As a baseline for the evaluation of CyGNSSnet, we include wind speed predictions obtained by a
conventional method, the Minimum Variance Estimator for fully developed seas [[L0,[19]. These wind
speeds are available as part of the Level 2 CyGNSS data product [20]].

2.2 CyGNSSnet
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Figure 1: CyGNSSnet processes two lines of input. BRCS DDMs (17 x 11 2D arrays) are processed
through a convolutional neural network (CNN) based on the VGGnet architecture [21]. Ancillary
parameters are processed in a second input line with one dense layer. Both lines are concatenated and
processed through two dense layers. Wind speed is predicted as a continuous variable.

The CyGNSSnet architecture is shown in Figure[T] To make use of the local features in the DDMs,
we use two input lines: First, the DDMs are processed by a convolutional network based on the
VGGnet architecture [21]. In a second input line, the ancillary parameters are processed through



a dense layer. Then, both input lines are concatenated and processed through two dense layers.
Dropout layers are added to improve regularization [22]]. The model hyperparameters are optimized
using the Tree-Parzen Estimator with the NNI package [23]. We average predictions across an
ensemble of three models. For the full hyperparameter search space and the model configurations,
see Appendix [A.4] We use the Adam optimizer and the mean squared error loss function.

CyGNSSnet is implemented in Pytorch [24]]. Training is conducted on single NVIDIA K80 GPUs
and takes less than 12 hours per model to complete.

2.3 Extreme value classifier

Less than 5 % of the samples are labeled with a wind speed exceeding 12 m/s. In order to improve the
performance on these samples, we train a separate CyGNSSnet-X only on extreme values exceeding
10 m/s, where 8.3 x 10° samples remain. For hyperparameters see Table

Whether a given instance constitutes an extreme sample is decided by a separate classifier. We train
an XGBoost classifier to state whether a sample exceeds 12 m/s, allowing for some overlap with the
CyGNSSnet-X training dataset. The classifier hyperparameters (Appendix [A.4.2)) are tuned on the
validation set, such that the Fjg score, 3 = 0.5, is maximized. This emphasizes precision over recall,
since the model trained on extreme values will perform poorly on average samples.

Predictions are then made with a hierarchical model, where C refers to the classifier, Mg to the
model trained on all available samples (CyGNSSnet), and M x to the model trained only on extreme
value samples (CyGNSSnet-X):

Mg (x;), otherwise.

(D

3 Results

3.1 General evaluation and model comparison

We evaluate CyGNSSnet on the hold-out test set covering Oct 17, 2018 — Feb 20, 2019. Table I]
shows the root mean square error (RMSE), with true values v and predicted values v,

for different deep learning algorithms: CyGNSSnet was trained on all samples, CyGNSSnet-X only
on samples exceeding 10 m/s. CyGNSSnet-C includes the classifier, cf. Eq. . MVE is the current
operational retrieval algorithm.

Table 1: RMSE obtained on the test set for different architectures and wind speeds. CyGNSSnet-X
was not trained at low winds, indicated by the round brackets. Best value highlighted in bold.

All samples v <12m/s 12m/s<wv<16m/s v > 16m/s

Architecture RMSE (mm/s) RMSE (in/s) RMSE (m/s) RMSE (m/s)
CyGNSSnet 1.36 1.31 2.38 4.99
CyGNSSnet-X (5.26) (5.32) 1.48 4.40
CyGNSSnet-C 1.38 1.34 2.26 4.79
MVE 1.90 1.88 2.29 3.39

Across all samples and for winds below 12 m /s, CyGNSSnet outperforms all other models. Compared
to the MVE, the RMSE is reduced by 29 %. Note that CyGNSSnet-X was not trained in this range.

For high winds, v > 12 m/s, MVE outperforms CyGNSSnet. CyGNSSnet-X, specifically trained for
this region, reaches a lower RMSE than the MVE in the region 12m/s < v < 16 m/s. At very high
wind speeds exceeding v > 16 m/s, it performs worse than MVE. Note that these are extreme values,
even to the data seen by CyGNSSnet-X.



To evaluate the performance of CyGNSSnet-C, first the classifier accuracy is determined on the
test set to Fig = 0.35, (8 = 0.5) (for details, see Appendix . Even though many samples are
incorrectly classified, extreme value predictions are improved by the combined model CyGNSSnet-C.
For winds with 12m/s < v < 16 m/s, CyGNSSnet-C outperforms MVE slightly. Beyond 16 m/s,
CyGNSSnet-C misses the MVE baseline, but improves on the standard CyGNSSnet.

Figure [2] shows the log-scale density plot of the predicted and the true wind speed values for
CyGNSSnet, CyGNSSnet-C, and MVE. The CyGNSSnet wind speeds are considerably closer to
the 1:1 line than the MVE wind speeds. A slight overestimation at average wind speeds, as well as
an underestimation for high wind speeds, is observed for all models. Comparing CyGNSSnet-C to
standard CyGNSSnet, the bias at high wind speeds is slightly reduced.
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Figure 2: Log-scale density plot of predicted wind speed vs. true (ERAS) wind speed. Left:
CyGNSSnet Center: CyGNSSnet-C Right: MVE

3.2 Evaluation in time and space

For an operational application, the deep learning algorithm must perform stable in time and space.
Figure 3(a) shows the RMSE for different values of the ERAS wind speed in three phases of the test
set, spanning about six weeks each. The error is comparable throughout the phases and only slightly
affected by the presence of stronger winds in the first phase. Figure [3(b) shows the CyGNSSnet bias,
0; — v;, averaged on a latitude-longitude grid with 1° resolution. The spatial patterns of wind speed
overestimation are similar to the ones seen for MVE (see Fig.[S8). Thus, they are likely resulting
from satellite measurement, rather than from a shortcoming of the deep learning algorithm.
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Figure 3: CyGNSSnet evaluated in time and space.

4 Discussion

We introduced CyGNSSnet, a deep learning algorithm to predict global ocean wind speed from
DDMs. The overall performance improves by 29% compared to the currently employed operational
algorithm (MVE). At high wind speeds exceeding 12 m/s, CyGNSSnet performs worse than the
MVE. We demonstrate that a hierarchical model, including an extreme value classifier and a separate
CyGNSSnet-X trained only on extreme values, can slightly improve performance in this range. The
classifier could potentially be further improved to increase the benefit of this approach.



Note that all methods suffer from underestimation of high wind speeds, which can be linked to the
sensitivity saturation of DDM observables in this regime [20, 25]]. Besides, the high variability of
strong wind speeds can introduce errors in the wind speed labels. With the current setup, CyGNSSnet
is limited to reproduce essentially the ERAS reanalysis wind speed dataset. Future work should
explore other sources for wind speed labels, and potentially use self-supervised learning.

CyGNSSnet provides stable performance in time over the available test set. The performance
evaluated on a global grid is comparable to existing bias patterns. In following work, we will aim to
further reduce the bias by incorporating relevant parameters, such as precipitation [26] 27]]. Already
now, CyGNSSnet is a match for the operational wind speed retrieval algorithm and demonstrates the
huge potential for deep learning in GNSS remote sensing.
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Appendix

Quality control in the dataset

To exclude low-quality samples, we filter for samples that meet a set of conditions [[12]:

1. The BRCS DDM uncertainty is below 1 (ddm_brcs_uncert < 1)

2. The spacecraft roll is between 1° and 30°, the pitch is between 1° and 10°, or the yaw is
between 1° and 5° (quality_flag = 4)

3. Nano star tracker attitude status is OK (nst_att_status = 1)

4. The receive antenna gain in the direction of the specular point is larger than 0 dBi
(sp_rx_gain)

5. The range corrected gain figure of merit of the DDM is larger than O (prn_fig_of_merit)

6. The leading edge slope (ddm_les) is larger than 0

7. The zenith signal to noise ration is larger than O dB (direct_signal_snr)

To remove potentially mislabeled samples, we determine the 95% confidence interval of the wind-
speed-dependent value of the normalized bistatic radar cross section (ddm_nbrcs) on the train dataset,
see Fig.[S4] By fitting an exponential function, we obtain

nbres(v) = 27.53e7%1%Y 17,99, nbres(v) = 285.0 %40 1 18.96
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Figure S4: Density plot of the normalized bistatic radar cross section ddm_nbrcs and the target wind
speed. The 95% confidence interval is indicated by dashed lines.

Samples labeled with wind speeds below 2.5 m/s are excluded. The DDM observables, particularly
the NBRCS, are insensitive to winds below this threshold, as seen in simulations and empirically

[261 [11].

A.2 Dataset statistics

The good-quality samples are clustered in time, see Fig.[S5] Note that due to the randomized selection
of DDMs with the same wind speed label, the sample count per day is lower in the training data range
compared to the validation and test data ranges, where this selection is not applied. The wind speed
distribution is comparable across the three datasets (Fig. [S6).
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Figure S5: Good-quality samples per day for the train, validation, and test dataset.

A.3 Input features

We use a data driven strategy for determining the input parameters to CyGNSSnet. For each potential
input parameter, we train 5 instances of CyGNSSnet and judge whether including the input parameter
improves the loss on the validation set. If performance is improved in at least 3 out of 5 trained
models, the input parameter is included. Thus, we form CyGNSSnet with 10 ancillary parameters,
where the input parameters are given in Table[S2}

A.4 Model parameters
A.4.1 Neural network hyperparameters

We tune the model hyperparameters using the NNI package [23]]. Table[S3]summarizes the hyperpa-
rameter search space.



2 Train Valid Test
€ 015

o

|9}

Q

%

£ 0.10

©

wn

o

o}

N

= 0.05

€

—

o

=4

0.00 -
5 10 15 20 5 10 15 20 5 10 15 20
ERA5 wind speed (m/s) ERA5 wind speed (m/s) ERA5 wind speed (m/s)

Figure S6: Wind speed distribution across the train, validation, and test dataset.

Table S2: Input parameters for CyGNSSnet. For the variables descriptions, see CyGNSS L1
V2.1 users’s guide and data dictionary, https://podaac-tools. jpl.nasa.gov/drive/files/
allData/cygnss/L1/docs/148-0346-6_L1_v2.1_netCDF_Data_Dictionary.xlsx.

Architecture | Maps | Map-related | Receiver-related | Geometry-related
ddm_nbrcs, ddm_les, gps_eirp, sp_inc_angle, sp_alt,
CvGNSSnet | bres log,(les_scatter_area), log,,(rx_to_sp_range) sp_theta_orbit
y log,(nbrcs_scatter_area),
ddm_snr

For each architecture, the three best models are taken from the hyperparameter tuning run. They form
an ensemble, their predictions on the test set are averaged. The hyperparameters are summarized in
Table[S4] (CyGNSSnet) and Table [S3] (CyGNSSnet-X).
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Table S3: Hyperparameter search space. Note that there are three fully connected layers and three
dropout layers, which are optimized separately. Thus, the total number of tunable hyperparameters is
12.

Parameter \ Search space
Learning rate 5x107°...1x 1073
Batch size 32...2048
Number of convolutional layers 1...8
Filters in first convolutional layer 8...64
Number of layers after which filters are doubled 2...8
Number of layers after which pooling is applied 1...8
Units in dense layers 4...256
Dropout after dense layers 0.0...0.3
Table S4: CyGNSSnet
Parameter \ El E2 E3
Learning rate 1.4x107% 73x107* 28x10~*
Batch size 64 1216 128
Number of conv. layers 3 4 5
Filters in first conv. layer 32 56 56
Filters doubled after layer 4 - -
Pooling after layer 2 2 4
Units in FCO 188 72 244
Dropout after FCO 0.04 0.26 0.08
Units in FC1 20 216 96
Dropout after FC1 0.02 0.03 0.03
Units in FC2 12 176 24
Dropout after FC2 0.02 0.16 0.27

Table S5: CyGNSSnet-X (Model trained on extreme values exceeding 10 m/s)

Parameter \ El E2 E3
Learning rate 49x107* 41x107% 94x 1074
Batch size 32 32 64
Number of conv. layers 2 7 7
Filters in first conv. layer 16 56 40
Filters doubled after layer - 6 6
Pooling after layer - 6 4
Units in FCO 68 164 20
Dropout after FCO 0.27 0.20 0.10
Units in FC1 72 36 124
Dropout after FC1 0.11 0.15 0.28
Units in FC2 156 48 136
Dropout after FC2 0.22 0.19 0.08
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A.4.2 XGBoost hyperparameters

An XGBoostClassifier is trained to recognize extreme samples with wind speed larger than 12 m/s.
Since the model that is trained on the extreme values performs significantly worse at average wind
speeds, we emphasize precision over recall and use the Fig score with 3 = 0.5 as an evaluation metric.
We only use the ancillary variables (see Table[S2) as inputs.

The hyperparameters are optimized on the validation set. We use the Tree Parzen Estimator (TPE)
algorithm in its implementation in the optuna package [28] and optimize the hyperparameters
in 80 trials. Note that the class imbalance is taken into account by the hyperparameter scale
positive weight. The resulting hyperparameters are given in Table [S6 For a full description of
XGBoost hyperparameters, see https://xgboost.readthedocs.io/en/latest/parameter|
html#learning-task-parameters

Table S6: XGBoost Classifier hyperparameters

Parameter | Search Space  Value
Maximum depth 3...15 9

Learning rate 0.01...1 0.54
Scale positive weight 0...100 1.98
Min. child weight 0...1 0.089
Gamma 0...100 74.0
Subsample fraction 0.1...1 0.20
Colsample by tree 0.1...1 0.82

A.5 Classifier evaluation

The performance of the XGBoost classifier is evaluated on the test set. The confusion matrix is

C— TN FP \ [ 8379728 216940
~“\ FN TP | — 120245 115460
Overall, we reach an Fjg = 0.37 score, where 5 = 0.5. Precision and recall are determined as

P—iTP =0.35 R—iTP =
T TP+FP 7 TP+ FN

Thus, many samples are incorrectly classified as extreme values. This can be seen in the histogram

plot in Fig.[S7]
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Figure S7: Binary class "extreme value", evaluated on the test set. The boundary at v = 12m/s is
indicated by the dashed line.
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The observed accuracy p, and the expected accuracy p,. are

TP+TN (TP + FN) x (TP + FP) + (TN + FP) x (TN + FN)
pO = ) e — 2
n n

with the total number of samples n. From there, we calculate Cohen’s «:
k= 0.024,

which indicates slight agreement with a random classifier.

A.6 MVE global evaluation

The MVE algorithm is evaluated on the test set, and bias, 0; — v;, is averaged on a latitude-longitude
grid with 1° resolution. The resulting spatial pattern is shown in Fig.[S8] Especially in the Asia-
Pacific regions, at longitudes between 50° W and 0°, the bias is comparatively large. In this region,
the Quasi-Zenith Satellite System is known to cause radio-frequency interference, which degrades
the signal-to-noise ratio of GNSS-R measurements [29].

40°N e s o5 _
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Figure S8: Bias on a latitude-longitude grid with 1° resolution for the MVE (current operational
baseline algorithm).

12



	Introduction
	Methods
	CyGNSS dataset
	CyGNSSnet
	Extreme value classifier

	Results
	General evaluation and model comparison
	Evaluation in time and space

	Discussion
	Appendix
	Quality control in the dataset
	Dataset statistics
	Input features
	Model parameters
	Neural network hyperparameters
	XGBoost hyperparameters

	Classifier evaluation
	MVE global evaluation


