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Earth Changing Energy Budget Uncertainty: 
Aerosols

Clouds and aerosols 
continue to contribute the 
largest uncertainty to 
estimates of the Earth’s 
changing energy budget

Atmospheric aerosols have 
direct and indirect effects 
on Earth’s climate and 
impacts on public health

IPCC AR5



New Particle Formation (NPF) and Growth

Aerosols (atmospheric particulate matter) originate from several 
natural and anthropogenic sources. 

New particle formation (NPF), gas-to-particle conversion of 
atmospheric vapours: 

• Major source of aerosols that are cloud condensation 
nuclei (CCN) and further affect the climate

• First step of complex process leading to formation 
of 40–70% CCN globally

• Observed in boreal forests, coastal, agricultural, and 
urban areas, including polluted megacities

• Profoundly affects climate, weather, air quality, and 
human health

earthobservatory.nasa.gov



New Particle Formation (Nucleation):
• Presently, atmospheric models rely on simple parameterisations: 

• Typically polynomial fits to measured NPF rates as a function of vapour 
concentration (and airborne ions) 

• They are only valid for the environments and conditions that match each 
observation site

Thermodynamics:
• Most commonly used thermodynamic models (ISORROPIA, EQSAM, E-AIM) 

use simplifications over the parameter space
• More detailed theoretical models including additional species (e.g. nano-

Köhler theory) were also shown to have limitations and are computationally 
expensive

SoA Models



The Challenge
Despite a wealth of available observations, the NPF parameterisations 
in regional and global models of the atmosphere are lacking:

For computational efficiency, process-based models rely on simple 
parameterisations or fits to disparate single experiments

Understanding and improving modelling of NPF is imperative to:

1. Reduce uncertainties in climate projections and 

2. Tackle urban air quality problems

Machine Learning Proposal: A consistent, NPF parameterisation for 
atmospheric modelling, combining both predictive capacity throughout 
the atmosphere and computational efficiency



Related Work
The introduction of machine learning methods in this field is limited to:

Automating the manual process of 

observed event identification based only 

on particle size distributions, with no 

inference or additional insights.
Atmos. Chem. Phys., 18, 9597–9615, 2018

Using random forest regression of 

atmospheric model data to a-

posteriori derive measured CCN. 

Atmos. Chem. Phys., 20, 12853–12869, 2020



Data Aggregation

• Measurement campaigns of NPF and growth collocated with ambient 
conditions measurements include in situ ground station, tower, and 
aircraft observations

• Additional multi-component nucleation measurement data are available 
from chamber experiments



Data Sources

i. In situ condensation particle counters (CPCs) for 22 ground station locations 
from the EBAS database (1972–2009)

ii. AGOS CARIBIC long distance flights deploying airfreight container with 
automated scientific apparatus. Using passenger Airbus A340-600 from 
Lufthansa (more than 550 flights)

iii. NASA DC-8 aircraft Atmospheric Tomography Missions (ATom): 0.2-12km 
altitude, 4 seasons, 4 years

iv. Aerosol, Cloud, Precipitation, and Radiation 
Interactions and Dynamics of Convective Cloud 
Systems (ACRIDICON) dataset by German DLR
High Altitude and Long Range Aircraft (HALO)

v. Chamber measurements, in particular the CERN 
CLOUD experiment



Machine Learning for NPF: Properties
The ML solution should exhibit properties such as:

• Applicability throughout the atmosphere (from lower troposphere to 
higher levels of the stratosphere),

• Robustness in forecasting under noise and missing/corrupted data,

• Fusion: Ingest data arising from experiments under different conditions 
(chamber, in-situ, aircraft) that describe the same underlying physical 
process

• Integrate process-based models with machine learning methods

• Interpretability/explainabilty: Discover insights into the NPF process to 
improve understanding and guide future capaigns.

• Computational efficiency



Machine Learning for NPF: Proposed Solutions

• Tree-based models ((deep) random forests, decision trees) can provide 
accurate results while also producing interpretable structures

• Tensor-based methods (e.g., exponential machines) can capture high-order 
multiplicative interactions between features quickly.  
• Can provide insights in terms of the interdependencies of species concentrations and 

ambient conditions.

• Transfer learning and domain adaptation: transfer knowledge between 
experiments conducted under different conditions
• Compensate for covariate shifts, learn common ’shared’ representations
• ‘Learn’ from process-based models (additional observations, side-information)

• Data imputation methods can be used for robustness under missing 
measurements



Outlook

• Machine Learning methods can overcome the long-standing challenges 
in understanding and simulating aerosol nucleation and growth 

• This in turn will decrease the largest uncertainty in 
climate projections and provide a tool to effectively 
tackle air quality problems caused by urbanisation and 
population growth

• Can ingest the data from diverse sources into a unified, global, 
multi-component parameterisation, valid throughout the 
atmosphere


