Forecasting MEFs in PJM

Amy Wang Western University hwang683@uwo.ca Priya Donti Carnegie Mellon University pdonti@cmu.edu

How clean is electricity from the power grid at a given time?

Smart EV charging

Optimize industrial and residential equipment

Emissions-cognizant electricity prices

Marginal Emissions Factors (MEFs): describe the emissions associated with marginal generators (i.e. generators that respond to small changes in demand at a certain time)

A gap exists with current forecasting methods

Full power system models: Expensive to run

"Reduced form" power models: Extremely sensitive to errors in input

Purely ML models: Lack of domain knowledge

Proposal Summary

Problem Statement

Forecasting day ahead, hourly CO₂ MEFs in PJM

Proposed Approach

 We propose incorporating differentiable power system models within neural networks.

Initial Investigation

Baseline Method #1: Neural Network Forecast

Hourly Next-Day Electricity Load Forecast Nuclear Generation (Last Week) Hourly Next-Day Weather Forecasts Temporal Features

Baseline Method #2: Dispatch with Forecasted Input

Fossil Generation = PJM's Next Day Hourly Load Forecast

- (Next Day Hourly Solar + Wind + Hydro Generation)
- Last Week's Nuclear Generation

Initial Investigation Results

Assessed based on their accuracy with respect to a proxy "ground truth" simulated based on a reduced-order dispatch model

Forecast Method	RMSE
Persistence baseline	190.84
Neural network baseline	212.25
Dispatch with forecasted inputs baseline	213.69

Proposed Approach: Combine traditional ML with power systems modelling

For training inputs $x \in \mathcal{X}$, ground truth labels $y \in \mathbb{R}^{24}$, and some loss function ℓ , we propose to train our neural network to optimize $\min_{x \in \mathcal{X}} \ell(d(N_{\theta}(x)), y)$.

MEF predictions on future hours given by $\hat{y} = d(N_{\theta}(x))$.

Thank you!

Amy Wang Western University hwang683@uwo.ca Priya Donti Carnegie Mellon University pdonti@cmu.edu