Carnegie Mellon University

High-fidelity Accelerated Design of High-performance Electrochemical Systems

Rachel Kurchin

Postdoctoral Fellow, Carnegie Mellon University

Our Team

MIT

Citrine Informatics Julia Computing External Collaborator

QuantumScape Carnegie Mellon

University

Electrification is key to addressing the climate crisis

- Renewable electricity sources (e.g. photovoltaics, wind) are critical, but insufficient
- Electrochemical devices provide ways to store electricity and also to electrify industries that still rely on fossil fuels
- We are developing a generalizable workflow for significantly faster discovery of new electrochemical materials and systems than was previously possible
- Two specific case studies
 - Electrochemical ammonia production (fertilizers)
 - Lithium-metal batteries (transportation+)

State-of-the-Art

Acknowledgements / Contact Information

https://www.cmu.edu/aced

https://www.github.com/aced-differentiate

