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El Niño–Southern 
Oscillation (ENSO)
● El Niño is the warm phase the 

ENSO climate pattern where the 
cold phase is referred to as La Niña

● An irregular climate phenomenon 
that occurs every 2-7 years

● Causes disasters worldwide

● Affects agriculture and public health



Previous Machine Learning (ML) for El Niño/Southern Oscillation (ENSO) research showed improved 
forecasting with the use of Convolutional Neural Networks (CNNs). This method outperformed 
state-of-the-art dynamical models by using sea surface temperature (SST) and heat content anomalies 
as model input. The predictand was the Oceanic Niño Index (ONI), a common measure of ENSO.
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Previous Research 

Y.-G. Ham, J.-H. Kim, and J.-J. Luo, “Deep learning for multi-year enso forecasts,” Nature, vol. 573, pp. 568–572, 9 2019



Motivation
Long-term ENSO forecasts have remained at low skill due to:

1. The high variability in ENSO manifestations 
2. The complexity of its teleconnections, i.e. interlinked, large-scale phenomena

Why Graph Neural Networks (GNN)?
● The large-scale dependencies that describe climate can be modeled as graph of a GNN

● GNNs generalize the notion of locality allowing for complex, non-Euclidean connections 
to be modeled via edges

● Enhanced interpretability (Inductive bias) via learned (pre-defined) edges 

● GNNs can overcome statistical model limitations of single-valued index output (e.g. only 
the coarse ONI) by forecasting target variables (SST anomalies) at target geographical 
regions (e.g. each node within the ONI region)
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1. Grid cells in climate dataset are individually represented as nodes Vi and each corresponds to 
a geographical location in terms of longitude and latitude

2. These locations are mapped as nodes in the graph:  G = (V, E)

3. Each node is associated with a feature vector of climate variables for each time step t

4. Edges between nodes encode information flow and inductive bias.

a.  Can be learnt jointly with the model’s parameters

b.  Selected based on domain knowledge
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Project Model:  Our Approach 



1. For our experiments, we build upon the spatiotemporal GNN proposed by Wu et al. [2]

2. We do not pre-define any edges

3. Once trained, our model can be used to project target climate variables at all nodes within the 
ONI region (Experiment 1), or to project the ONI index (Experiment 2), for a specified number 
of months in advance 
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Project Model:  Our Approach (cont.) 

6
[2] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the dots: Multivariate time series forecasting with graph neural networks,” KDD 2020

ONI index region
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Enhanced Interpretability: Our GNN Learns Meaningful Connections
The summed weights of incoming edges are plotted for each node. Nodes with darker colors have a 
central role in the graph, as the model assigns higher importance to them. Nodes with the highest 
importance can be seen in or near the ONI region for 1 lead month, while closely resembling the ENSO 
pattern for 6 lead months in terms of higher SST in the Central and Eastern Tropical Pacific*.

*Sea Surface Temperature Anomaly Animation of 6mon before 2015/16 El Nino (columbia.edu)

1 Lead Month

6 Lead Months

https://iridl.ldeo.columbia.edu/maproom/Global/Ocean_Temp/Anomaly_Loop.html?T=July%202015%20-%20Aug%202015
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Project Overview:  Data
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1973

Training Set

Exp. 1: ERSSTv5 
Exp. 2: CMIP5 + SODA 
Data as in [1]

  

1984

Validation Set

Exp. 1: ERSSTv5 
Exp. 2: SODA  

  

2020

Test Set

Exp. 1: ERSSTv5 
Exp. 2: GODAS

  

1871

Two datasets are incorporated in this research for two separate experiments:

● Experiment 1:  SST anomalies computed from the NOAA ERSSTv5 dataset for training, validating and testing model, split 
in a sequential manner. We test on 1984-2020.

○ Only 1233 training samples

● Experiment 2: We use the exact same data and data split as [1], i.e. CMIP5 simulations, and the SODA dataset with SST 
anomaly data for (pre-)training and GODAS dataset for testing (1984-2017).

[1] **Y.-G. Ham, J.-H. Kim, and J.-J. Luo, “Deep learning for multi-year enso forecasts,” Nature, vol. 573, pp. 568–572, 9 2019



● Our simple, very efficient GNN1 model gives fairly skillful forecasts of the ONI as well 
as the zonal SSTAs (Table 1)

● Our GNN2 models outperforms the state-of-the-art CNN [1] for 1 and 3 lead months 
(Table 2) (but does not yet use heat content, nor additional inductive bias via pre-defined edges). 

● The use of simulation data (GNN2) from a larger region of the world significantly  
improves model performance (Table 1).
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Our Results 

Metric Model n = 1 n = 3 n = 6

Correlation GNN1 0.9867 0.8936 0.6776

GNN2 0.9882 0.9273 0.7755

RMSE GNN1 0.1278 0.3556 0.6034

GNN2 0.1202 0.2900 0.4923

Table 1: 
Correlation skill and RMSE for n lead months on ERSSTv5

[1] **Y.-G. Ham, J.-H. Kim, and J.-J. Luo, “Deep learning for multi-year enso forecasts,” Nature, vol. 573, pp. 568–572, 9 2019

Model n = 1 n = 3 n = 6 n = 12

CNN [1] ca. 0.94 0.8761 0.7616 0.6515

GNN2 (ours) 0.9747 0.8908 0.7420 0.5547

Table 2: 
Predictive correlation skill for n lead months on GODAS



10

Test period forecasts
ERSSTv5 ONI index = Orange  
GNN forecasted ONI index = Blue

ONI region
Latitude:  5°S to 5°N          
Longitude:  120°W to 170°W

3 Lead Month Forecast of GNN1
SST anomalies of past 12-month period were used as model input to forecast 
ENSO for 3-month ahead.  Results show improved performance over 
previous CNN model with ONI forecast correlation = 0.8936 and a 
root-mean-square error (RMSE)= 0.356.
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GNN1 Forecasts are Independent of the Seasonal Cycle  
We extracted information of both the seasonal cycle and ENSO events from a single 
recording of the SSTAs using principal component analysis. This allowed us to determine the 
presence of the seasonal cycle in the used dataset computed from ERSSTv5. The heat 
maps indicate that the seasonal cycle is not present in this dataset, so our GNN1 model 
does not rely on seasonal cycle when making forecasts.
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Exciting Future Research Directions:

We plan to:

● Remove the potential influence of the seasonal cycle for data used in the GNN2 model

● Include additional features such as heat content anomalies

● Explore ways to potentially increase our models skill in estimating extreme ENSO events 
(e.g. via a custom loss function)

● Use the edge weight analysis to assess the reliability of our model and potentially look for 
yet undiscovered ENSO teleconnections

● Incorporate climatologists’ knowledge on known teleconnections and regions correlated 
with ENSO conditions for pre-assigning edge weights


