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Climate Models: NCAR Community Earth System Model1

State-of-the-art “virtual laboratory” for studying past, present, and
future global climate states;
Fully coupled: all simulation components are computed together
Code base currently contains > 1.5 million lines of code

1Image credit: http://www.cesm.ucar.edu/
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CESM is in constant state of development

Quality assurance checks
I Detect and reduce errors which could adversely affect the simulation
I Maintain the model scientific credibility in the community

Climate simulations can still be valid, but not bit-for-bit (BFB)
identical to other runs

I Different compiler or computing architecture
I Different machine hardware
I Different random number generator
I Different parameter settings
I ...

How can we make sure that non-BFB identical simulation outputs are a
result of expected variation rather than a “climate-changing” error we

introduced in the code?
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Ensemble Consistency Testing

Compare the test simulation (red) with an ensemble of trusted simulations.
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Two sample Test via Probabilistic Classifier

Let P0 and P1 be the distributions of trusted and test runs
Trusted runs: S0 = {X0

1, . . . ,X0
m}

i.i.d.∼ P0

Test runs: S1 = {X1
1, . . . ,X1

n}
i.i.d.∼ P1 (usually m� n)

We want to formally test the hypothesis H0 : P1 = P0 versus H1 : P1 6= P0

We turn this into a probabilistic classification problem:
we introduce a binary random variable or class label Y for each run
we interpret Pi, i = 0, 1, as the class-conditional distributions of X
given Y = i

=⇒ H0 : P1 = P0 ⇐⇒ H0 : P(Y = 1|X = x) = P(Y = 1) ∀ x ∈ X.
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HECT: High-dimensional Ensemble Consistency Testing
We can test such null hypothesis with the following test statistic2:

T̂ = 1
n+m

n+m∑
i=1

(r̂(Xi)− π̂1)2 , (1)

where r̂(x) is an estimate of P(Y = 1|X = x) based on {(Xi, Yi)}n+m
i=1 ,

and π̂1 = 1
n+m

∑n+m
i=1 I(Yi = 1) is an estimate of P(Y = 1).

Benefits
r can be any probabilistic classifier (from tree-based methods to deep
neural networks – more later)
Using high-capacity classifiers we can compare trusted and test runs
at a spatial/temporal level (high-dimensional)
We can provide diagnostics by identifying statistically significant
spatial and/or temporal differences between runs

2Kim, Lee, Lei (2019), Dalmasso et al. (2020)
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Comparison with State of the Art

Current approach – PCA-based testing:
Compresses the data with a dimensionality reduction step
Requires spatial and temporal averaging of simulation outputs, as well
as climate variables selection
Lacks theoretical guarantees for type I and II error

Proposed approach – HECT:
No dimensionality reduction step is needed
Spatial and temporal averages limited/not necessary
Performance of the probabilistic classifier is shown to directly connect
to the type I and type II error of the test2
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Consistency Testing at Different Resolutions

Simulation outputs are currently compared after:
(1) Spatial averaging across a global grid and vertical atmosphere
(2) Temporal averaging across simulation time-steps
(3) Selection of relevant climate features

Examples of probabilistic classifiers for HECT:
(1) CNN can detect local differences in spatial structure
(2) Multivariate time-series models (e.g., RNN) can take into account the

entire simulated sequence of climate variables
(3) Tree-based algorithms implicitly provide feature selection and are

robust to highly correlated features
(1,2) Spatio-temporal deep neural networks can compare runs that are only

averaged over the vertical level of the atmosphere
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