Explaining Complex Energy Systems A Challenge

Tackeling Climate Change with Machine Learning
11.12.2020 – NeurIPS 2020 Workshop

M.Sc. Jonas Hülsmann jonas.huelsmann@eins.tu-darmstadt.de TU Darmstadt

Prof. Dr. Florian Steinke florian.steinke@eins.tu-darmstadt.de TU Darmstadt

This work was funded by German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung BMBF) in the Project PlexPlain.

The challenge: How to explain innovative energy systems to non-experts

- Innovative energy systems are typically planned based on models that have a simple LP structure but large numbers of variables and parameters
- Outputs are also large scaled and their internal logic is hard to extract

321 pages [1]

810 pages [2]

400 pages [3]

290 pages [4]

- > These studies are the basis for desicions made by managers, politicans or citizens (= non-experts)
- Explanation needed (as for complex ML models)

We provide a simple Energy System Model for test purposes*

Energy system model of single household

- Minimizes cost by choosing PV and battery capacity
- Time series for PV availability and electric demand
- One year simulation (hour resultion)
- 4 Inputs PV price, battery price, electricity price (from grid), total demand
- 5 Outputs PV capacity, battery capacity, own generation, TOTEX,
 CAPEX

^{*}pyomo model available at https://github.com/pe0nd/Explaining-Complex-Energy-Systems

We provide a simple Energy System Model for test purposes

Input:

Photovoltaik

 c_{PV}

Batteriestorage

 c_{Bat}

Energy demand

D(t)

Power grid

 c_{Buy}

Modell:

$$\min_{Cap,p} \mathbf{cost} = c_{PV} \times Cap_{PV} + c_{Bat} \times Cap_{Bat}^{S} + \sum_{t} c_{Buy} \times p_{Buy}(t)$$

s.t.

$$p_{Buv}(t) + p_{PV}(t) + p_{Bat}^{out}(t) - p_{Bat}^{in}(t) = D(t), \forall t$$

$$p_{Bat}^{S}(t) = p_{Bat}^{S}(t-1) + p_{Bat}^{in}(t) - p_{Bat}^{out}(t), t \in 2 \dots T$$

$$0 \le p_{PV}(t) \le Cap_{PV} \times avail_{PV}(t) \times \Delta t, \forall t$$

$$0 \le p_{Bat}^{in}(t), p_{Bat}^{out}(t) \le Cap_{Bat}^S, \forall t$$

$$p_{Bat}^S(0) = p_{Bat}^S(T)$$

$$0 \le p_{Buy}(t), \forall t$$

Output:

Capacity PV

 Cap_{PV}

Capacity battery

 Cap_{Bat}^{S}

Own generation

$$\sum_{t} p_{PV}(t) \div \sum_{t} D(t)$$

CAPEX

 $c_{PV} \times Cap_{PV} + c_{Bat} \times Cap_{Bat}^{S}$

TOTEX

 $CAPEX + \sum_{t} p_{Buy}(t) \times c_{Buy}$

We provide a simple Energy System Model for test purposes

Input:

Photovoltaik

 c_{PV}

Batteriestorage

 c_{Bat}

Energy demand

D(t)

Power grid

 c_{Buy}

Output:

Capacity PV

 Cap_{PV}

Capacity battery

 Cap_{Bat}^{S}

Own generation

$$\sum_{t} p_{PV}(t) \div \sum_{t} D(t)$$

CAPEX

 $c_{PV} \times Cap_{PV} + c_{Bat} \times Cap_{Bat}^{S}$

TOTEX

 $CAPEX + \sum_{t} p_{Buy}(t) \times c_{Buy}$

How could an explanation look like?

Ideas for the simple energy model

decision tree

structural causal model

Challenge:

- Can interpretable ML methods be used for this purpose?
- How to measure the quality of an explanation?

References

[1] Ram, M., et al. "Global energy system based on 100% renewable energy—power, heat, transport and desalination sectors." *Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta, Berlin* (2019).

[2] IEA (2019), World Energy Outlook 2019, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2019

[3] IEA (2020), Energy Technology Perspectives 2020, IEA, Paris https://www.iea.org/reports/energy-technology-perspectives-2020

[4] Gerbert, Philipp, et al. Klimapfade für Deutschland. BCG, The Boston Consulting Group, 2018.