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Why Long-Range Temp. & Precip. Forecasts?

« Temperature and precipitation are important climate variables that can have adverse
effects on the economy and society

» Sectors affected include: Agriculture, forestry, fisheries, energy, health, tourism
» Long-range forecasts can assist in mitigation and preparedness of anticipated impacts
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Why Use Machine Learning?

« ML approaches require less time and resources to train than numerical climate models
* Predictions from ML approaches can be interpretable (e.g. Toms et al., 2019)
* In some cases, ML can improve upon numerical climate models (e.g. Ham et al., 2019)
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Climatology PCC

Low latitudes: Honolulu, USA (21.3°N, 157.9°W); Panama City (9.0°N, 79.5°W)
Singapore (1.4°N, 103.8°E), Middle of the Pacific Ocean (4.4°N, 167.7°W)
Mid/High latitudes: Moscow, Russia (55.8°N, 37.6°E); London, UK (51.5°N, 0.1°W)
Christchurch, NZ (43.5°N, 172.6°E); Perth, Australia (32.0°S,115.9°E)
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